Atherosclerosis and flow: roles of epigenetic modulation in vascular endothelium

被引:95
作者
Lee, Ding-Yu [1 ]
Chiu, Jeng-Jiann [2 ,3 ,4 ,5 ,6 ]
机构
[1] China Univ Sci & Technol, Dept Biol Sci & Technol, Taipei 115, Taiwan
[2] Natl Hlth Res Inst, Inst Cellular & Syst Med, Miaoli 350, Taiwan
[3] Natl Tsing Hua Univ, Inst Biomed Engn, Hsinchu 300, Taiwan
[4] Taipei Med Univ, Coll Pharm, Taipei 110, Taiwan
[5] Natl Cheng Kung Univ, Inst Biomed Engn, Tainan 701, Taiwan
[6] Natl Taiwan Univ, Inst Polymer Sci & Engn, Taipei 106, Taiwan
关键词
DNA methyltransferase; Endothelial cell; Epigenetic factor; Hemodynamic force; Histone deacetylase; Non-coding RNA; LAMINAR SHEAR-STRESS; KRUPPEL-LIKE FACTOR-2; HIGH-FAT DIET; HISTONE DEACETYLASES; DNA METHYLATION; DISTURBED FLOW; INFLAMMATORY RESPONSE; GENE-EXPRESSION; CELL-CYCLE; IN-VITRO;
D O I
10.1186/s12929-019-0551-8
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Background Endothelial cell (EC) dysfunctions, including turnover enrichment, gap junction disruption, inflammation, and oxidation, play vital roles in the initiation of vascular disorders and atherosclerosis. Hemodynamic forces, i.e., atherprotective pulsatile (PS) and pro-atherogenic oscillatory shear stress (OS), can activate mechanotransduction to modulate EC function and dysfunction. This review summarizes current studies aiming to elucidate the roles of epigenetic factors, i.e., histone deacetylases (HDACs), non-coding RNAs, and DNA methyltransferases (DNMTs), in mechanotransduction to modulate hemodynamics-regulated EC function and dysfunction. Main body of the abstract OS enhances the expression and nuclear accumulation of class I and class II HDACs to induce EC dysfunction, i.e., proliferation, oxidation, and inflammation, whereas PS induces phosphorylation-dependent nuclear export of class II HDACs to inhibit EC dysfunction. PS induces overexpression of the class III HDAC Sirt1 to enhance nitric oxide (NO) production and prevent EC dysfunction. In addition, hemodynamic forces modulate the expression and acetylation of transcription factors, i.e., retinoic acid receptor alpha and kruppel-like factor-2, to transcriptionally regulate the expression of microRNAs (miRs). OS-modulated miRs, which stimulate proliferative, pro-inflammatory, and oxidative signaling, promote EC dysfunction, whereas PS-regulated miRs, which induce anti-proliferative, anti-inflammatory, and anti-oxidative signaling, inhibit EC dysfunction. PS also modulates the expression of long non-coding RNAs to influence EC function. i.e., turnover, aligmant, and migration. On the other hand, OS enhances the expression of DNMT-1 and -3a to induce EC dysfunction, i.e., proliferation, inflammation, and NO repression. Conclusion Overall, epigenetic factors play vital roles in modulating hemodynamic-directed EC dysfunction and vascular disorders, i.e., atherosclerosis. Understanding the detailed mechanisms through which epigenetic factors regulate hemodynamics-directed EC dysfunction and vascular disorders can help us to elucidate the pathogenic mechanisms of atherosclerosis and develop potential therapeutic strategies for atherosclerosis treatment.
引用
收藏
页数:17
相关论文
共 127 条
[1]   Laminar shear stress inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21Sdi1/Cip1/Waf1 [J].
Akimoto, S ;
Mitsumata, M ;
Sasaguri, T ;
Yoshida, Y .
CIRCULATION RESEARCH, 2000, 86 (02) :185-190
[2]   Impact of high fat diet on long non-coding RNAs and messenger RNAs expression in the aortas of ApoE(-/-) mice [J].
Bao, Mei-hua ;
Luo, Huai-qing ;
Chen, Li-hua ;
Tang, Liang ;
Ma, Kui-fen ;
Xiang, Ju ;
Dong, Li-ping ;
Zeng, Jie ;
Li, Guang-yi ;
Li, Jian-ming .
SCIENTIFIC REPORTS, 2016, 6
[3]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[4]   Circular RNAs as Potential Theranostics in the Cardiovascular System [J].
Bei, Yihua ;
Yang, Tingting ;
Wang, Lijun ;
Holvoet, Paul ;
Das, Saumya ;
Sluijter, Joost P. G. ;
Monteiro, Marta Chagas ;
Liu, Yang ;
Zhou, Qiulian ;
Xiao, Junjie .
MOLECULAR THERAPY-NUCLEIC ACIDS, 2018, 13 :407-418
[5]   Endothelial dysfunction - A marker of atherosclerotic risk [J].
Bonetti, PO ;
Lerman, LO ;
Lerman, A .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2003, 23 (02) :168-175
[6]   Key transcriptional regulators of the vasoprotective effects of shear stress [J].
Boon, R. A. ;
Horrevoets, A. J. G. .
HAMOSTASEOLOGIE, 2009, 29 (01) :39-+
[7]   A Role for the Long Noncoding RNA SENCR in Commitment and Function of Endothelial Cells [J].
Boulberdaa, Mounia ;
Scott, Elizabeth ;
Ballantyne, Margaret ;
Garcia, Raquel ;
Descamps, Betty ;
Angelini, Gianni D. ;
Brittan, Mairi ;
Hunter, Amanda ;
McBride, Martin ;
McClure, John ;
Miano, Joseph M. ;
Emanueli, Costanza ;
Mills, Nicholas L. ;
Mountford, Joanne C. ;
Baker, Andrew H. .
MOLECULAR THERAPY, 2016, 24 (05) :978-990
[8]   Extensive demethylation of normally hypermethylated CpG islands occurs in human atherosclerotic arteries [J].
Castillo-Diaz, Silvia A. ;
Garay-Sevilla, Maria E. ;
Hernandez-Gonzalez, Martha A. ;
Solis-Martinez, Martha O. ;
Zaina, Silvio .
INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2010, 26 (05) :691-700
[9]   Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10 [J].
Chang, Shurong ;
Young, Bryan D. ;
Li, Shijie ;
Qi, Xiaoxia ;
Richardson, James A. ;
Olson, Eric N. .
CELL, 2006, 126 (02) :321-334
[10]   Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development [J].
Chang, SR ;
McKinsey, TA ;
Zhang, CL ;
Richardson, JA ;
Hill, JA ;
Olson, EN .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (19) :8467-8476