ON A CLASS OF SINGULAR NONLINEAR TRAVELING WAVE EQUATIONS (II): AN EXAMPLE OF GCKdV EQUATIONS

被引:32
作者
Li, Jibin [1 ]
Zhang, Yi [2 ]
Zhao, Xiaohua [2 ]
机构
[1] Kunming Univ Sci & Technol, Kunming 200062, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2009年 / 19卷 / 06期
基金
中国国家自然科学基金;
关键词
Solitary wave solution; periodic wave solution; kink and anti-kink wave solutions; breaking wave solution; soliton equation; PETVIASHVILI EQUATION; KDV; HIERARCHY;
D O I
10.1142/S021812740902386X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using the method of dynamical systems, we continuously study the dynamical behavior for the first class of singular nonlinear traveling wave systems. As an example, the traveling wave solutions for a generalized coupled KdV equations are discussed. Exact explicit parametric representations of solitary wave solutions, periodic wave solutions and kink wave solutions are given.
引用
收藏
页码:1995 / 2007
页数:13
相关论文
共 9 条
[1]  
BYRD PF, 1977, HDB ELLIPTIC INTEGRA
[2]   Relation between the Kadometsev-Petviashvili equation and the confocal involutive system [J].
Cao, CW ;
Wu, YT ;
Geng, XG .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (08) :3948-3970
[3]  
CAO CW, 1990, J PHYS A-MATH GEN, V23, P4117, DOI 10.1088/0305-4470/23/18/017
[4]   Quasi-periodic solutions of the modified Kadomtsev-Petviashvili equation [J].
Geng, XG ;
Wu, YT ;
Cao, CW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (20) :3733-3742
[5]  
Li J., 2007, STUDY SINGULAR NONLI
[6]   On a class of singular nonlinear traveling wave equations [J].
Li, Jibin ;
Chen, Guanrong .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (11) :4049-4065
[7]   Traveling waves for an integrable higher order KdV type wave equations [J].
Li, Jibin ;
Wu, Jianhong ;
Zhu, Huaiping .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (08) :2235-2260
[8]   Lax matrix and a generalized coupled KdV hierarchy [J].
Li, XM ;
Geng, XG .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 327 (3-4) :357-370
[9]   Darboux transformation of generalized coupled KdV soliton equation and its odd-soliton solutions [J].
Liu Ping .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2008, 29 (03) :399-407