Dimension preserving resolutions of singular Poisson structures

被引:0
|
作者
Lassoued, Hichem [1 ,2 ]
机构
[1] Univ Badji Mokhtar Annaba, LANOS, BP 12, Annaba 23000, Algeria
[2] Univ Lorraine, IECL, UMR 7502, Rue Augustin Fresnel, F-57000 Metz, France
关键词
LOCAL-STRUCTURE;
D O I
10.1016/j.difgeo.2019.04.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give examples of Poisson structures that admit symplectic resolutions of the same dimension. We also give a simple condition under which proper in the smooth case or semi-connected symplectic resolutions in the real analytic and holomorphic case can not exist: open symplectic leaves have to be dense and the singular locus can not be of codimension one. (C) 2019 Published by Elsevier B.V.
引用
收藏
页码:212 / 226
页数:15
相关论文
共 50 条
  • [1] Singular Poisson structures
    Stolovitch, L
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 : 1833 - 1863
  • [2] Degenerate Poisson structures in dimension 3
    Lychagina, OV
    MATHEMATICAL NOTES, 1998, 63 (3-4) : 509 - 521
  • [3] Degenerate Poisson structures in dimension 3
    O. V. Lychagina
    Mathematical Notes, 1998, 63 : 509 - 521
  • [4] Poisson resolutions
    Fu, BH
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2005, 587 : 17 - 26
  • [5] Linearizability of Poisson structures around singular symplectic leaves
    Yu. M. Vorobjev
    Mathematical Notes, 2006, 80 : 780 - 790
  • [6] Linearizability of Poisson structures around singular symplectic leaves
    Vorobjev, Yu. M.
    MATHEMATICAL NOTES, 2006, 80 (5-6) : 780 - 790
  • [7] Local models of three-dimensional singular Poisson structures
    Wade, A
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1997, 125 (04): : 573 - 618
  • [8] ON BOTT-MORSE FOLIATIONS AND THEIR POISSON STRUCTURES IN DIMENSION THREE
    Evangelista-Alvarado, M.
    Suarez-Serrato, P.
    Torres Orozco, J.
    Vera, R.
    JOURNAL OF SINGULARITIES, 2019, 19 : 19 - 33
  • [9] On functors preserving projective resolutions
    Santana, Ana Paula
    Yudin, Ivan
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025, 24 (01)
  • [10] Cohomological dimension and acyclic resolutions
    Koyama, A
    Yokoi, K
    TOPOLOGY AND ITS APPLICATIONS, 2002, 120 (1-2) : 175 - 204