Principal powers of matrices with positive definite real part

被引:56
作者
Drury, Stephen [1 ]
机构
[1] McGill Univ, Dept Math & Stat, Montreal, PQ, Canada
关键词
principal power; operator norm; geometric mean; symbolic calculus; numerical range; 15A45;
D O I
10.1080/03081087.2013.865732
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study principal powers of complex square matrices with positive definite real part, or with numerical range contained in a sector. We extend the notion of geometric mean to such matrices and we establish an operator norm bound in this context.
引用
收藏
页码:296 / 301
页数:6
相关论文
共 8 条
[1]  
Bhatia R, 2007, PRINC SER APPL MATH, P1
[2]   Numerical ranges of the powers of an operator [J].
Choi, Man-Duen ;
Li, Chi-Kwong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (02) :458-466
[3]   Fischer determinantal inequalities and Higham's Conjecture [J].
Drury, S. W. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) :3129-3133
[4]  
Drury SW, PREPRINT
[5]  
Drury SW, 2013, LINEAR MULTILINEAR A, DOI [10.1080/03081087.2013.832244, DOI 10.1080/03081087.2013.832244.]
[6]   On the properties of accretive-dissipative matrices [J].
George, A ;
Ikramov, KD .
MATHEMATICAL NOTES, 2005, 77 (5-6) :767-776
[7]  
Gradshteyn L.S., 1980, Tables of Integrals, Series, and Products, P837
[8]  
Li C-K, J MATH ANAL APPL