Improved Operating Space of the ICRF System in ASDEX Upgrade

被引:8
作者
Bobkov, V [1 ]
Bilato, R. [1 ]
Faugel, H. [1 ]
Funfgelder, H. [1 ]
Kazakov, Ye O. [2 ]
Mantsinen, M. [3 ,4 ]
Noterdaeme, J-M [1 ,5 ]
Ochoukov, R. [1 ]
Puetterich, Th [1 ]
Suarez Lopez, G. [1 ]
Tierens, W. [1 ]
Zhang, W. [1 ]
机构
[1] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
[2] Royal Mil Acad, LPP ERM KMS, 30 Ave Renaissance, B-1000 Brussels, Belgium
[3] Barcelona Supercomp Ctr, Barcelona, Spain
[4] ICREA, Barcelona, Spain
[5] Univ Ghent, Appl Phys Dept, Ghent, Belgium
来源
23RD TOPICAL CONFERENCE ON RADIOFREQUENCY POWER IN PLASMAS | 2020年 / 2254卷
关键词
D O I
10.1063/5.0014238
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Following the improvements of compatibility of ICRF system with the tungsten (W) wall in ASDEX Upgrade (AUG) by using the boron-coated limiters on the 2-strap ICRF antennas and the 3-strap antennas with the W-limiters, the ICRF operating space was further extended in 3 areas: power, phase control between the antennas and frequency range. The available ICRF power in AUG was increased by using an additional RF generator to feed the central straps of the 3-strap antennas which require a 1.5:1 or 2:1 power ratio between the central strap and the two outer straps (combined) to minimize the ICRF-specific W sources. This increases the total experimentally achievable launched ICRF power in the optimized configuration to similar to 5.7 MW. A new phase control system enabled phase-locked operation of all 4 AUG ICRF antennas. This allows a better control of the launched k(parallel to) spectrum which on its turn is modified when both neighboring antennas are active, as well as of the structure of the global RF field distribution within the AUG vessel. Measurements by the RF magnetic field (B-dot) probes show that the RF field distribution can indeed be significantly affected by the variation of the phasing between the ICRF antenna pairs. However, its effect on the core plasma and on the residual ICRF specific plasma-wall interactions is small, for the cases so far limited to the H-modes at medium plasma densities. The available frequency range was extended and now covers four discrete frequencies (f): 30.0, 36.5, 41.8 and 55.1 MHz. In addition to the standard hydrogen (H) minority in deuterium (D) on-axis heating scheme at the magnetic field (B-t) of 2.0, 2.5, 2.8 and 3.1 T, the RF frequency range allows the use of the 3-ion D-(He-3)-H and He-4-(He-3)-H heating schemes at B-t=2.5-3.1 T (f=30 MHz - off-axis and on-axis), on-axis 3 omega(c) D heating at B-t=1.9 T (f=41.8 MHz) and at B-t=2.5 T (f=55.1 MHz) and 2 omega(c) H heating at B-t=1.9T (f=55.1 MHz).
引用
收藏
页数:4
相关论文
共 10 条
[1]   Impact of ICRF on the scrape-off layer and on plasma wall interactions: From present experiments to fusion reactor [J].
Bobkov, V ;
Aguiam, D. ;
Bilato, R. ;
Brezinsek, S. ;
Colas, L. ;
Czarnecka, A. ;
Dumortier, P. ;
Dux, R. ;
Faugel, H. ;
Funfgelder, H. ;
Jacquetg, Ph ;
Kaltenbach, A. ;
Krivska, A. ;
Klepper, C. C. ;
Lerche, E. ;
Lin, Y. ;
Milanesio, D. ;
Maggiora, R. ;
Monakhovg, I ;
Neu, R. ;
Noterdaeme, J-M ;
Ochoukov, R. ;
Piitterich, Th ;
Reinke, M. ;
Tierens, W. ;
Tuccilo, A. ;
Tudisco ;
Van Eester, D. ;
Wright, J. ;
Wukitchk, S. ;
Zhang, W. ;
Abduallev, S. ;
Abhangi, M. ;
Abreu, P. ;
Afzal, M. ;
Aggarwal, K. M. ;
Ahlgren, T. ;
Ahn, J. H. ;
Aho-Mantila, L. ;
Aiba, N. ;
Airila, M. ;
Albanese, R. ;
Aldred, V. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allinson, M. ;
Alper, B. .
NUCLEAR MATERIALS AND ENERGY, 2019, 18 :131-140
[2]   Making ICRF power compatible with a high-Z wall in the ASDEX Upgrade [J].
Bobkov, V. ;
Aguiam, D. ;
Bilato, R. ;
Brezinsek, S. ;
Colas, L. ;
Faugel, H. ;
Fuenfgelder, H. ;
Herrmann, A. ;
Jacquot, J. ;
Kallenbach, A. ;
Milanesio, D. ;
Maggiora, R. ;
Neu, R. ;
Noterdaeme, J-M ;
Ochoukov, R. ;
Potzel, S. ;
Puetterich, T. ;
Silva, A. ;
Tierens, W. ;
Tuccilo, A. ;
Tudisco, O. ;
Wang, Y. ;
Yang, Q. ;
Zhang, W. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (01)
[3]   ICRF operation with improved antennas in ASDEX Upgrade with W wall [J].
Bobkov, V. ;
Balden, M. ;
Bilato, R. ;
Braun, F. ;
Dux, R. ;
Herrmann, A. ;
Faugel, H. ;
Fuenfgelder, H. ;
Giannone, L. ;
Kallenbach, A. ;
Maier, H. ;
Mueller, H. W. ;
Neu, R. ;
Noterdaeme, J-M ;
Puetterich, Th ;
Rohde, V. ;
Tsujii, N. ;
Zeus, F. ;
Zohm, H. .
NUCLEAR FUSION, 2013, 53 (09)
[4]   An overview of the in-vessel ICRF-diagnostics in the ASDEX Upgrade tokamak [J].
Faugel, H. ;
Ochoukov, R. ;
Bobkov, V ;
Fuenfgelder, H. ;
Noterdaeme, J. M. ;
Aguiam, D. ;
Dux, R. .
FUSION ENGINEERING AND DESIGN, 2019, 146 :2557-2560
[5]  
Faugel H., 23 TOP C RAD POW PLA
[6]   Lifetime Prolongation of ICRF Generators, Practical Aspects and Results [J].
Fuenfgelder, H. ;
Pompon, F. ;
Faugel, H. ;
Singh, R. ;
Bhardwaj, A. ;
Kushwah, M. K. ;
Mukherjee, A. .
RADIO FREQUENCY POWER IN PLASMAS: PROCEEDINGS OF THE 19TH TOPICAL CONFERENCE, 2011, 1406
[7]  
Kazakov Ye., 2018, P 27 INT C FUS EN AH
[8]  
Mantsinen M., P 43 EPS C PLASM PHY
[9]   THE XMOS ARCHITECTURE AND XS1 CHIPS [J].
May, David .
IEEE MICRO, 2012, 32 (06) :28-37
[10]   A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade [J].
Ochoukov, R. ;
Bobkov, V. ;
Faugel, H. ;
Fuenfgelder, H. ;
Noterdaeme, J. -M. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2015, 86 (11)