Enhancing Obfuscated Malware Detection with Machine Learning Techniques

被引:7
作者
Dang, Quang-Vinh [1 ]
机构
[1] Ind Univ Ho Chi Minh City, Ho Chi Minh City, Vietnam
来源
FUTURE DATA AND SECURITY ENGINEERING. BIG DATA, SECURITY AND PRIVACY, SMART CITY AND INDUSTRY 4.0 APPLICATIONS, FDSE 2022 | 2022年 / 1688卷
关键词
Obfuscated malware; Malware detection; Machine learning;
D O I
10.1007/978-981-19-8069-5_54
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Obfuscated malware is malware that tries to be hidden from malware detection software. While there are some advances in the malware detection research community in recent years, modern malware uses multiple techniques to avoid being detected by the anti-malware system. In this research, we aim to improve the detection quality of malware by using state-of-the-art machine learning algorithms. The experimental results show that our proposed methods outperform state-of-the-art research studies.
引用
收藏
页码:731 / 738
页数:8
相关论文
共 23 条
[1]  
[Anonymous], 2010, 2010 INT C BROADBAND, DOI DOI 10.1109/BWCCA.2010.85
[2]  
[Anonymous], 2012, Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software. No
[3]   A Comprehensive Review on Malware Detection Approaches [J].
Aslan, Omer ;
Samet, Refik .
IEEE ACCESS, 2020, 8 :6249-6271
[4]  
Barria Huidobro Cristian, 2018, 2018 7th International Conference on Computers Communications and Control (ICCCC), P183, DOI 10.1109/ICCCC.2018.8390457
[5]  
Bekerman D, 2015, IEEE CONF COMM NETW, P134, DOI 10.1109/CNS.2015.7346821
[6]   Detecting Obfuscated Malware using Memory Feature Engineering [J].
Carrier, Tristan ;
Victor, Princy ;
Tekeoglu, Ali ;
Lashkari, Arash Habibi .
PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY (ICISSP), 2021, :177-188
[7]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[8]  
Dang Quang-Vinh, 2022, Digital Science: DSIC 2021. Lecture Notes in Networks and Systems (381), P525, DOI 10.1007/978-3-030-93677-8_46
[9]  
Dang Q.-V., 2021, FDSE 2021, P356, DOI [10.1007/978-3-030-91387-8_23, DOI 10.1007/978-3-030-91387-823]
[10]   Semantics-Based Online Malware Detection: Towards Efficient Real-Time Protection Against Malware [J].
Das, Sanjeev ;
Liu, Yang ;
Zhang, Wei ;
Chandramohan, Mahintham .
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2016, 11 (02) :289-302