Quantized Gromov-Hausdorff distance

被引:37
作者
Wu, Wei [1 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
quantized metric space; matrix Lipschitz seminorm; matrix seminorm; matrix state space; quantized; Gromov-Hausdorff distance;
D O I
10.1016/j.jfa.2005.02.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A quantized metric space is a matrix order unit space equipped with an operator space version of Rieffel's Lip-norm. We develop for quantized metric spaces an operator space version of quantum Gromov-Hausdorff distance. We show that two quantized metric spaces are completely isometric if and only if their quantized Gromov-Hausdorff distance is zero. We establish a completeness theorem. As applications, we show that a quantized metric space with I-exact underlying matrix order unit space is a limit of matrix algebras with respect to quantized Gromov-Hausdorff distance, and that matrix algebras converge naturally to the sphere for quantized Gromov-Hausdorff distance. (C) 2006 Published by Elsevier Inc.
引用
收藏
页码:58 / 98
页数:41
相关论文
共 21 条
[11]  
KADISON RV, 1951, MEM AM MATH SOC, V7
[12]   Matricial quantum Gromov-Hausdorff distance [J].
Kerr, D .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 205 (01) :132-167
[13]  
KERR D, 2004, MATHOA0411157
[14]   θ-Deformations as compact quantum metric spaces [J].
Li, HF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 256 (01) :213-238
[15]   Hyperbolic group C*-algebras and free-product C*-algebras as compact quantum metric spaces [J].
Ozawa, N ;
Rieffel, MA .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2005, 57 (05) :1056-1079
[16]  
PAULSEN V. I., 1986, Completely bounded maps and dilations
[17]  
Pisier G., 2003, INTRO OPERATOR SPACE, V294
[18]  
Rieffel M.A., 1999, DOC MATH, V4, P559
[19]   The Krein-Milman theorem in operator convexity [J].
Webster, C ;
Winkler, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (01) :307-322
[20]  
Wu W, 2006, P AM MATH SOC, V134, P443