Quantized Gromov-Hausdorff distance

被引:37
作者
Wu, Wei [1 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
quantized metric space; matrix Lipschitz seminorm; matrix seminorm; matrix state space; quantized; Gromov-Hausdorff distance;
D O I
10.1016/j.jfa.2005.02.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A quantized metric space is a matrix order unit space equipped with an operator space version of Rieffel's Lip-norm. We develop for quantized metric spaces an operator space version of quantum Gromov-Hausdorff distance. We show that two quantized metric spaces are completely isometric if and only if their quantized Gromov-Hausdorff distance is zero. We establish a completeness theorem. As applications, we show that a quantized metric space with I-exact underlying matrix order unit space is a limit of matrix algebras with respect to quantized Gromov-Hausdorff distance, and that matrix algebras converge naturally to the sphere for quantized Gromov-Hausdorff distance. (C) 2006 Published by Elsevier Inc.
引用
收藏
页码:58 / 98
页数:41
相关论文
共 21 条
[1]  
[Anonymous], 2004, MEM AM MATH SOC, V168, P1
[2]  
[Anonymous], MEM AM MATH SOC
[3]  
[Anonymous], 2002, DOC MATH
[4]  
[Anonymous], DOC MATH
[5]   Generalized inductive limits of finite-dimensional C*-algebras [J].
Blackadar, B ;
Kirchberg, E .
MATHEMATISCHE ANNALEN, 1997, 307 (03) :343-380
[6]   INJECTIVITY AND OPERATOR SPACES [J].
CHOI, MD ;
EFFROS, EG .
JOURNAL OF FUNCTIONAL ANALYSIS, 1977, 24 (02) :156-209
[7]   COMPACT METRIC-SPACES, FREDHOLM MODULES, AND HYPERFINITENESS [J].
CONNES, A .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1989, 9 :207-220
[8]   Matrix convexity: Operator analogues of the bipolar and Hahn-Banach theorems [J].
Effros, EG ;
Winkler, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 144 (01) :117-152
[9]  
Effros EG, 1997, NATO ADV SCI I C-MAT, V495, P163
[10]  
Gromov M., 1999, Metric structures for Riemannian and non-Riemannian spaces