Extension and approximation of m-subharmonic functions

被引:5
作者
Ahag, Per [1 ]
Czyz, Rafal [2 ]
Hed, Lisa [1 ]
机构
[1] Umea Univ, Dept Math & Math Stat, Umea, Sweden
[2] Jagiellonian Univ, Fac Math & Comp Sci, Krakow, Poland
关键词
Exhaustion function; m-subharmonic function; Jensen measure; approximation; Dirichlet problem; PLURISUBHARMONIC-FUNCTIONS; DIRICHLET PROBLEM; SIMPLICIAL CONES;
D O I
10.1080/17476933.2017.1345888
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let . Cn be a bounded domain, and let f be a real-valued function defined on the whole topological boundary. . The aim of this paper is to find a characterization of the functions f which can be extended to the inside to am-subharmonic function under suitable assumptions on . We shall do so using a function algebraic approach with focus on m-subharmonic functions defined on compact sets. We end this note with some remarks on approximation of m-subharmonic functions.
引用
收藏
页码:783 / 801
页数:19
相关论文
共 47 条
[1]  
[Anonymous], EXPOSITION MATH
[2]  
[Anonymous], 1959, Trans. Am. Math. Soc.
[3]  
[Anonymous], 1999, Ann. Polon. Math.
[4]  
[Anonymous], 1941, AM MATH SOC TRANSL
[5]  
[Anonymous], 1986, Potential Theory. An Analytic and Probabilistic Approach to Balayage
[6]  
ARMITAGE DH, 2001, SPRINGER MG MATH, P1, DOI 10.1007/978-1-4471-0233-5
[7]  
ARSOVE M, 1980, MEM AM MATH SOC, V23, P1
[8]   Approximation of plurisubharmonic functions [J].
Avelin, Benny ;
Hed, Lisa ;
Persson, Hakan .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (01) :23-28
[9]  
BLIEDTNER J, 1978, INVENT MATH, V46, P255, DOI 10.1007/BF01390278
[10]   SIMPLICIAL CONES IN POTENTIAL THEORY [J].
BLIEDTNER, J ;
HANSEN, W .
INVENTIONES MATHEMATICAE, 1975, 29 (02) :83-110