Harnessing redox signaling to overcome therapeutic-resistant cancer dormancy

被引:22
作者
Qin, Siyuan [1 ,2 ,3 ,4 ]
Li, Bowen [1 ,2 ,3 ,4 ]
Ming, Hui [1 ,2 ,3 ,4 ]
Nice, Edouard C. [5 ]
Zou, Bingwen [6 ,7 ]
Huang, Canhua [1 ,2 ,3 ,4 ]
机构
[1] Sichuan Univ, West China Hosp, State Key Lab Biotherapy, Chengdu 610041, Peoples R China
[2] Sichuan Univ, West China Hosp, Canc Ctr, Chengdu 610041, Peoples R China
[3] Sichuan Univ, West China Sch Basic Med Sci & Forens Med, Chengdu 610041, Peoples R China
[4] Collaborat Innovat Ctr Biotherapy, Chengdu 610041, Peoples R China
[5] Monash Univ, Dept Biochem & Mol Biol, Clayton, Vic 3800, Australia
[6] Sichuan Univ, West China Hosp, Canc Ctr, Dept Thorac Oncol, Chengdu 610041, Peoples R China
[7] Sichuan Univ, West China Hosp, Canc Ctr, Dept Radiat Oncol, Chengdu 610041, Peoples R China
来源
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER | 2022年 / 1877卷 / 04期
基金
中国国家自然科学基金;
关键词
Dormancy; Drug resistance; Redox signaling; ROS; Cancer therapy; STEM-CELL QUIESCENCE; OXIDATIVE STRESS; PROSTATE-CANCER; DRUG-TOLERANT; COLORECTAL-CANCER; TUMOR DORMANCY; NICHE; METASTASIS; MICROENVIRONMENT; CHEMOTHERAPY;
D O I
10.1016/j.bbcan.2022.188749
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Dormancy occurs when cells preserve viability but stop proliferating, which is considered an important cause of tumor relapse, which may occur many years after clinical remission. Since the life cycle of dormant cancer cells is affected by both intracellular and extracellular factors, gene mutation or epigenetic regulation of tumor cells may not fully explain the mechanisms involved. Recent studies have indicated that redox signaling regulates the formation, maintenance, and reactivation of dormant cancer cells by modulating intracellular signaling pathways and the extracellular environment, which provides a molecular explanation for the life cycle of dormant tumor cells. Indeed, redox signaling regulates the onset of dormancy by balancing the intrinsic pathways, the extrinsic environment, and the response to therapy. In addition, redox signaling sustains dormancy by managing stress homeostasis, maintaining stemness and immunogenic equilibrium. However, studies on dormancy reactivation are still limited, partly explained by redox-mediated activation of lipid metabolism and the transition from the tumor microenvironment to inflammation. Encouragingly, several drug combination strategies based on redox biology are currently under clinical evaluation. Continuing to gain an in-depth understanding of redox regulation and develop specific methods targeting redox modification holds the promise to accelerate the development of strategies to treat dormant tumors and benefit cancer patients.
引用
收藏
页数:15
相关论文
共 232 条
[1]   Participation of TNF-α in Inhibitory Effects of Adipocytes on Osteoblast Differentiation [J].
Abuna, Robrigo P. F. ;
De Oliveira, Fabiola S. ;
Santos, Thiago De S. ;
Guerra, Thais R. ;
Rosa, Adalberto L. ;
Beloti, Marcio M. .
JOURNAL OF CELLULAR PHYSIOLOGY, 2016, 231 (01) :204-214
[2]   Entry and exit of chemotherapeutically-promoted cellular dormancy in glioblastoma cells is differentially affected by the chemokines CXCL12, CXCL16, and CX3CL1 [J].
Adamski, Vivian ;
Hattermann, Kirsten ;
Kubelt, Carolin ;
Cohrs, Gesa ;
Lucius, Ralph ;
Synowitz, Michael ;
Sebens, Susanne ;
Held-Feindt, Janka .
ONCOGENE, 2020, 39 (22) :4421-4435
[3]   Quiescent Tissue Stem Cells Evade Immune Surveillance [J].
Agudo, Judith ;
Park, Eun Sook ;
Rose, Samuel A. ;
Alibo, Eziwoma ;
Sweeney, Robert ;
Dhainaut, Maxime ;
Kobayashi, Koichi S. ;
Sachidanandam, Ravi ;
Baccarini, Alessia ;
Merad, Miriam ;
Brown, Brian D. .
IMMUNITY, 2018, 48 (02) :271-+
[4]   How dormant cancer persists and reawakens [J].
Aguirre-Ghiso, Julio A. .
SCIENCE, 2018, 361 (6409) :1314-+
[5]   Non-canonical Keap1-independent activation of Nrf2 in astrocytes by mild oxidative stress [J].
Al-Mubarak, Bashayer R. ;
Bell, Karen F. S. ;
Chowdhry, Sudhir ;
Meakin, Paul J. ;
Baxter, Paul S. ;
McKay, Sean ;
Dando, Owen ;
Ashford, Michael L. J. ;
Gazaryan, Irina ;
Hayes, John D. ;
Hardingham, Giles E. .
REDOX BIOLOGY, 2021, 47
[6]   Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice [J].
Albrengues, Jean ;
Shields, Mario A. ;
Ng, David ;
Park, Chun Gwon ;
Ambrico, Alexandra ;
Poindexter, Morgan E. ;
Upadhyay, Priya ;
Uyeminami, Dale L. ;
Pommier, Arnaud ;
Kuttner, Victoria ;
Bruzas, Emilis ;
Maiorino, Laura ;
Bautista, Carmelita ;
Carmona, Ellese M. ;
Gimotty, Phyllis A. ;
Fearon, Douglas T. ;
Chang, Kenneth ;
Lyons, Scott K. ;
Pinkerton, Kent E. ;
Trotman, Lloyd C. ;
Goldberg, Michael S. ;
Yeh, Johannes T. -H. ;
Egeblad, Mikala .
SCIENCE, 2018, 361 (6409) :1353-+
[7]   Chemical methods for mapping cysteine oxidation [J].
Alcock, Lisa J. ;
Perkins, Michael V. ;
Chalker, Justin M. .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (01) :231-268
[8]   Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion [J].
Angeli, Jose Pedro Friedmann ;
Krysko, Dmitri, V ;
Conrad, Marcus .
NATURE REVIEWS CANCER, 2019, 19 (07) :405-414
[9]   SMAD signaling and redox imbalance cooperate to induce prostate cancer cell dormancy [J].
Anh Thu Bui ;
Laurent, Fanny ;
Havard, Maryline ;
Dautry, Francois ;
Tchenio, Thierry .
CELL CYCLE, 2015, 14 (08) :1218-1231
[10]   Oxidative Phosphorylation as an Emerging Target in Cancer Therapy [J].
Ashton, Thomas M. ;
McKenna, W. Gillies ;
Kunz-Schughart, Leoni A. ;
Higgins, Geoff S. .
CLINICAL CANCER RESEARCH, 2018, 24 (11) :2482-2490