Dynamics of a predator-prey system with prey refuge

被引:0
作者
Lajmiri, Zeynab [1 ]
Orak, Iman [1 ]
Hosseini, Samane [1 ]
机构
[1] Islamic Azad Univ, Izeh Branch, Sama Tech & Vocat Training Coll, Izeh, Iran
来源
COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS | 2019年 / 7卷 / 03期
关键词
Hopf bifurcation; Bogdanov-Takens bifurcation; Dynamical behavior; Limit cycles; ADDITIONAL FOOD; BIFURCATION-ANALYSIS; STABILITY ANALYSIS; MODEL;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the dynamical complexities of a prey predator model prey refuge providing additional food to predator. We determine dynamical behaviors of the equilibria of this system and characterize codimension 1 and codimension 2 bifurcations of the system analytically. Hopf bifurcation conditions are derived analytically. We especially approximate a family of limit cycles emanating from a Hopf point. The analytical results are in well agreement with the numerical simulation results. Our bifurcation analysis indicates that the system exhibits numerous types of bifurcation phenomena, including Hopf, and Bogdanov-Takens bifurcations.
引用
收藏
页码:454 / 474
页数:21
相关论文
共 41 条
[1]  
Agarwal M., 2012, INT J MATH SOFT COMP, V1, P83
[2]  
Allgower E. L., 1990, NUMERICAL CONTINUATI
[3]  
[Anonymous], 2005, USDA FOREST SERVICE
[4]  
Beyn W-J., 2002, Handbook of Dynamical Systems, P149, DOI [DOI 10.1016/S1874-575X, DOI 10.1016/S1874-575X(02)80025-X, 10.1016/S1874-575X(02)80025-X]
[5]  
Cantrell RS, 2004, Spatial Ecology via ReactionDiffusion Equations
[6]   MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs [J].
Dhooge, A ;
Govaerts, W ;
Kuznetsov, YA .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2003, 29 (02) :141-164
[7]   Bifurcation analysis of a generalized Gause model with prey harvesting and a generalized Holling response function of type III [J].
Etoua, Remy Magloire ;
Rousseau, Christiane .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (09) :2316-2356
[8]   DYNAMICS OF A RATIO-DEPENDENT PREDATOR-PREY SYSTEM WITH A STRONG ALLEE EFFECT [J].
Gao, Yujing ;
Li, Bingtuan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (09) :2283-2313
[9]   Prey-predator dynamics with prey refuge providing additional food to predator [J].
Ghosh, Joydev ;
Sahoo, Banshidhar ;
Poria, Swarup .
CHAOS SOLITONS & FRACTALS, 2017, 96 :110-119
[10]   Numerical continuation of bifurcations of limit cycles in MATLAB [J].
Govaerts, W ;
Kuznetsov, YA ;
Dhooge, A .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (01) :231-252