Strain-programmable fiber-based artificial muscle

被引:364
作者
Kanik, Mehmet [1 ,2 ]
Orguc, Sirma [3 ]
Varnavides, Georgios [1 ,2 ,4 ]
Kim, Jinwoo [2 ]
Benavides, Thomas [3 ]
Gonzalez, Dani [5 ]
Akintilo, Timothy [6 ]
Tasan, C. Cem [2 ]
Chandrakasan, Anantha P. [3 ]
Fink, Yoel [1 ,2 ]
Anikeeva, Polina [1 ,2 ]
机构
[1] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[3] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[4] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[5] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[6] Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
TENDRIL PERVERSION; ACTUATORS;
D O I
10.1126/science.aaw2502
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Artificial muscles may accelerate the development of robotics, haptics, and prosthetics. Although advances in polymer-based actuators have delivered unprecedented strengths, producing these devices at scale with tunable dimensions remains a challenge. We applied a high-throughput iterative fiber-drawing technique to create strain-programmable artificial muscles with dimensions spanning three orders of magnitude. These fiber-based actuators are thermally and optically controllable, can lift more than 650 times their own weight, and withstand strains of >1000%. Integration of conductive nanowire meshes within these fiber-based muscles offers piezoresistive strain feedback and demonstrates long-term resilience across >10(5) deformation cycles. The scalable dimensions of these fiber-based actuators and their strength and responsiveness may extend their impact from engineering fields to biomedical applications.
引用
收藏
页码:145 / +
页数:37
相关论文
共 35 条
[1]   High-Performance Multiresponsive Paper Actuators [J].
Amjadi, Morteza ;
Sitti, Metin .
ACS NANO, 2016, 10 (11) :10202-10210
[2]  
Chen PN, 2015, NAT NANOTECHNOL, V10, P1077, DOI [10.1038/NNANO.2015.198, 10.1038/nnano.2015.198]
[3]   A Biomimetic Conductive Tendril for Ultrastretchable and Integratable Electronics, Muscles, and Sensors [J].
Cheng, Yin ;
Wang, Ranran ;
Chan, Kwok Hoe ;
Lu, Xin ;
Sun, Jing ;
Ho, Ghim Wei .
ACS NANO, 2018, 12 (04) :3898-3907
[4]   Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk [J].
Chun, Kyoung-Yong ;
Kim, Shi Hyeong ;
Shin, Min Kyoon ;
Kwon, Cheong Hoon ;
Park, Jihwang ;
Kim, Youn Tae ;
Spinks, Geoffrey M. ;
Lima, Marcio D. ;
Haines, Carter S. ;
Baughman, Ray H. ;
Kim, Seon Jeong .
NATURE COMMUNICATIONS, 2014, 5
[5]  
Darwin C.R., 1865, The Movements and habits of Climbing Plants
[6]   Preparation of biomimetic hierarchically helical fiber actuators from carbon nanotubes [J].
Deng, Jue ;
Xu, Yifan ;
He, Sisi ;
Chen, Peining ;
Bao, Luke ;
Hu, Yajie ;
Wang, Bingjie ;
Sun, Xuemei ;
Peng, Huisheng .
NATURE PROTOCOLS, 2017, 12 (07) :1349-1358
[7]   KIRCHHOFF THEORY OF RODS [J].
DILL, EH .
ARCHIVE FOR HISTORY OF EXACT SCIENCES, 1992, 44 (01) :1-23
[8]   How the Cucumber Tendril Coils and Overwinds [J].
Gerbode, Sharon J. ;
Puzey, Joshua R. ;
McCormick, Andrew G. ;
Mahadevan, L. .
SCIENCE, 2012, 337 (6098) :1087-1091
[9]   Self-winding of helices in plant tendrils and cellulose liquid crystal fibers [J].
Godinho, M. H. ;
Canejo, J. P. ;
Feio, G. ;
Terentjev, E. M. .
SOFT MATTER, 2010, 6 (23) :5965-5970
[10]   How to mimic the shapes of plant tendrils on the nano and microscale: spirals and helices of electrospun liquid crystalline cellulose derivatives [J].
Godinho, M. H. ;
Canejo, J. P. ;
Pinto, L. F. V. ;
Borges, J. P. ;
Teixeira, P. I. C. .
SOFT MATTER, 2009, 5 (14) :2772-2776