Sequence-specific interaction between mitochondrial Fe-S scaffold protein Isu and Hsp70 Ssq1 is essential for their in vivo function

被引:79
作者
Dutkiewicz, R
Schilke, B
Cheng, S
Knieszner, H
Craig, EA
Marszalek, J
机构
[1] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA
[2] Univ Gdansk, Dept Mol & Cellular Biol, PL-80822 Gdansk, Poland
关键词
D O I
10.1074/jbc.M402947200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Isu, the scaffold for assembly of Fe-S clusters in the yeast mitochondrial matrix, is a substrate protein for the Hsp70 Ssq1 and the J-protein Jac1 in vitro. As expected for an Hsp70-substrate interaction, the formation of a stable complex between Isu and Ssq1 requires Jac1 in the presence of ATP. Here we report that a conserved tripeptide, PVK, of Isu is critical for interaction with Ssq1 because amino acid substitutions in this tripeptide inhibit both the formation of the Isu-Ssq1 complex and the ability of Isu to stimulate the ATPase activity of Ssq1. These biochemical defects correlate well with the growth defects of cells expressing mutant Isu proteins. We conclude that the Ssq1-Isu substrate interaction is critical for Fe-S cluster biogenesis in vivo. The ability of Jac1 and mutant Isu proteins to cooperatively stimulate the ATPase activity of Ssq1 was also measured. Increasing the concentration of Jac1 and mutant Isu together but not individually partially overcame the effect of the reduced affinity of the Isu mutant proteins for Ssq1. These results, along with the observation that overexpression of Jac1 was able to suppress the growth defect of an ISU mutant, support the hypothesis that Isu is "targeted" to Ssq1 by Jac1, with a preformed Jac1-Isu complex interacting with Ssq1.
引用
收藏
页码:29167 / 29174
页数:8
相关论文
共 38 条
[1]   IscU as a scaffold for iron-sulfur cluster biosynthesis: Sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU [J].
Agar, JN ;
Krebs, C ;
Frazzon, J ;
Huynh, BH ;
Dean, DR ;
Johnson, MK .
BIOCHEMISTRY, 2000, 39 (27) :7856-7862
[2]   Thermotoga maritima IscU.: Structural characterization and dynamics of a new class of metallochaperone [J].
Bertini, I ;
Cowan, JA ;
Del Bianco, C ;
Luchinat, C ;
Mansy, SS .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 331 (04) :907-924
[3]   The Hsp70 and Hsp60 chaperone machines [J].
Bukau, B ;
Horwich, AL .
CELL, 1998, 92 (03) :351-366
[4]   A specialized mitochondrial molecular chaperone system: A role in formation of Fe/S centers [J].
Craig, EA ;
Marszalek, J .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2002, 59 (10) :1658-1665
[5]   Ssq1, a mitochondrial Hsp70 involved in iron-sulfur (Fe/S) center biogenesis - Similarities to and differences from its bacterial counterpart [J].
Dutkiewicz, R ;
Schilke, B ;
Knieszner, H ;
Walter, W ;
Craig, EA ;
Marszalek, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (32) :29719-29727
[6]   Formation of iron-sulfur clusters in bacteria: an emerging field in bioinorganic chemistry [J].
Frazzon, J ;
Dean, DR .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2003, 7 (02) :166-173
[7]   Saccharomyces cerevisiae ISU1 and ISU2:: Members of a well-conserved gene family for iron-sulfur cluster assembly [J].
Garland, SA ;
Hoff, K ;
Vickery, LE ;
Culotta, VC .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 294 (04) :897-907
[8]   An interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu1 [J].
Gerber, J ;
Mühlenhoff, U ;
Lill, R .
EMBO REPORTS, 2003, 4 (09) :906-911
[9]   Mechanism of the targeting action of DnaJ in the DnaK molecular chaperone system [J].
Han, WJ ;
Christen, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (21) :19038-19043
[10]   Protein folding - Molecular chaperones in the cytosol: from nascent chain to folded protein [J].
Hartl, FU ;
Hayer-Hartl, M .
SCIENCE, 2002, 295 (5561) :1852-1858