On the rigidity of proper holomorphic mappings for the Bergman-Hartogs domains

被引:1
作者
Bi, Enchao [1 ]
机构
[1] Qingdao Univ, Sch Math & Stat, Qingdao 266071, Shandong, Peoples R China
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2022年 / 175卷
基金
中国国家自然科学基金;
关键词
Proper holomorphic mapping; Bergman kernel; Bergman-Hartogs domain; AUTOMORPHISM GROUP; MAPS;
D O I
10.1016/j.bulsci.2022.103114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we mainly discuss the proper holomorphic mappings of the Bergman-Hartogs domains raised by Roos, which can also be regarded as a natural generalization of Cartan-Hartogs domains. We show that any proper holomorphic mapping between two equidimensional Bergman-Hartogs domains over bounded circular homogeneous domains is a biholomorphism. As an application of our result, we can firstly obtain the rigidity of the proper holomorphic mappings for the Cartan-Hartogs domains. Secondly, we are able to describe the biholomorphism between two Bergman-Hartogs domains over any bounded circular homogeneous domains, and thus we can completely determine its automorphism group without fibre's restriction.(c) 2022 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:13
相关论文
共 19 条
[1]   AUTOMORPHISMS OF THE HARTOGS TYPE DOMAINS OVER CLASSICAL SYMMETRIC DOMAINS [J].
Ahn, Heungju ;
Byun, Jisoo ;
Park, Jong-Do .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (09)
[2]   PROPER HOLOMORPHIC MAPPINGS IN CN [J].
ALEXANDER, H .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1977, 26 (01) :137-146
[3]   PROPER SELF MAPS OF WEAKLY PSEUDO-CONVEX DOMAINS [J].
BEDFORD, E ;
BELL, S .
MATHEMATISCHE ANNALEN, 1982, 261 (01) :47-49
[4]   PROPER HOLOMORPHIC MAPPINGS BETWEEN CIRCULAR DOMAINS [J].
BELL, SR .
COMMENTARII MATHEMATICI HELVETICI, 1982, 57 (04) :532-538
[5]   On canonical metrics on Cartan-Hartogs domains [J].
Feng, Zhiming ;
Tu, Zhenhan .
MATHEMATISCHE ZEITSCHRIFT, 2014, 278 (1-2) :301-320
[6]  
Forstneric F, 1993, SEVERAL COMPLEX VARI, V38, P297
[7]  
Huang XJ, 1999, J DIFFER GEOM, V51, P13
[8]   Domains with non-compact automorphism group: A survey [J].
Isaev, AV ;
Krantz, SG .
ADVANCES IN MATHEMATICS, 1999, 146 (01) :1-38
[10]   Balanced metrics on Cartan and Cartan-Hartogs domains [J].
Loi, Andrea ;
Zedda, Michela .
MATHEMATISCHE ZEITSCHRIFT, 2012, 270 (3-4) :1077-1087