A Nonlinear time-optimal control problem

被引:1
作者
Topunov, MV [1 ]
机构
[1] Moscow State Pedag Univ, Moscow 119435, Russia
关键词
Control System; Mechanical Engineer; Control Problem; System Theory; Nonlinear Control;
D O I
10.1023/A:1016150613313
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sufficient conditions for the existence of an optimal control in a time-optimal control problem with fixed ends for a smooth nonlinear control system are formulated. The properties of this system for characterizing the optimal control switching points are studied.
引用
收藏
页码:1062 / 1069
页数:8
相关论文
共 50 条
[21]   The classical regulation problem: Its solution by optimal control methods [J].
Gabasov, R ;
Kirillova, FM ;
Ruzhitskaya, EA .
AUTOMATION AND REMOTE CONTROL, 2001, 62 (06) :875-885
[22]   The Classical Regulation Problem: Its Solution by Optimal Control Methods [J].
R. Gabasov ;
F. M. Kirillova ;
E. A. Ruzhitskaya .
Automation and Remote Control, 2001, 62 :875-885
[23]   Optimal singular control for nonlinear semistabilisation [J].
L'Afflitto, Andrea ;
Haddad, Wassim M. .
INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (06) :1222-1239
[24]   Optimal robust state-feedback control of nonlinear systems: minimal time to target [J].
Hammer, Jacob .
INTERNATIONAL JOURNAL OF CONTROL, 2021, 94 (02) :433-451
[25]   An optimal control problem for the Oskolkov equation [J].
Sviridyuk, GA ;
Plekhanova, MV .
DIFFERENTIAL EQUATIONS, 2002, 38 (07) :1064-1066
[26]   An Optimal Control Problem with the Small Parameter [J].
S. M. Nikol'skii .
Journal of Mathematical Sciences, 2004, 121 (2) :2248-2253
[27]   Optimal control problem on a bounded interval [J].
Janković V. .
Journal of Mathematical Sciences, 2002, 110 (2) :2583-2589
[28]   A Very Regular Optimal Control Problem [J].
M. S. Nikol'skii .
Differential Equations, 2005, 41 :1602-1608
[29]   An Optimal Control Problem for the Oskolkov Equation [J].
G. A. Sviridyuk ;
M. V. Plekhanova .
Differential Equations, 2002, 38 :1064-1066
[30]   A very regular optimal control problem [J].
Nikol'skii, MS .
DIFFERENTIAL EQUATIONS, 2005, 41 (11) :1602-1608