Correlated Electron-Nuclear Dynamics with Conditional Wave Functions

被引:31
作者
Albareda, Guillermo [1 ]
Appel, Heiko [1 ]
Franco, Ignacio [2 ]
Abedi, Ali [3 ]
Rubio, Angel [1 ,4 ,5 ,6 ]
机构
[1] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
[2] Univ Rochester, Dept Chem, Rochester, NY 14627 USA
[3] Max Planck Inst Mikrostrukturphys, D-06120 Halle, Germany
[4] Univ Basque Country, CFM CSIC UPV EHU MPC, Nanobio Spect Grp, E-20018 Donostia San Sebastian, Spain
[5] Univ Basque Country, CFM CSIC UPV EHU MPC, ETSF Sci Dev Ctr, E-20018 Donostia San Sebastian, Spain
[6] DIPC, E-20018 Donostia San Sebastian, Spain
基金
欧洲研究理事会;
关键词
QUANTUM TRAJECTORIES; CLASSICAL DYNAMICS; MOLECULAR-DYNAMICS; TRANSITIONS; MODEL;
D O I
10.1103/PhysRevLett.113.083003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The molecular Schrodinger equation is rewritten in terms of nonunitary equations of motion for the nuclei (or electrons) that depend parametrically on the configuration of an ensemble of generally defined electronic (or nuclear) trajectories. This scheme is exact and does not rely on the tracing out of degrees of freedom. Hence, the use of trajectory-based statistical techniques can be exploited to circumvent the calculation of the computationally demanding Born-Oppenheimer potential-energy surfaces and non-adiabatic coupling elements. The concept of the potential-energy surface is restored by establishing a formal connection with the exact factorization of the full wave function. This connection is used to gain insight from a simplified form of the exact propagation scheme.
引用
收藏
页数:5
相关论文
共 32 条
[1]   Dynamical Steps that Bridge Piecewise Adiabatic Shapes in the Exact Time-Dependent Potential Energy Surface [J].
Abedi, Ali ;
Agostini, Federica ;
Suzuki, Yasumitsu ;
Gross, E. K. U. .
PHYSICAL REVIEW LETTERS, 2013, 110 (26)
[2]   Exact Factorization of the Time-Dependent Electron-Nuclear Wave Function [J].
Abedi, Ali ;
Maitra, Neepa T. ;
Gross, E. K. U. .
PHYSICAL REVIEW LETTERS, 2010, 105 (12)
[3]   Time-resolved electron transport with quantum trajectories [J].
Albareda, G. ;
Marian, D. ;
Benali, A. ;
Yaro, S. ;
Zanghi, N. ;
Oriols, X. .
JOURNAL OF COMPUTATIONAL ELECTRONICS, 2013, 12 (03) :405-419
[4]   COMPUTATION OF QUANTUM ELECTRICAL CURRENTS THROUGH THE RAMO-SHOCKLEY-PELLEGRINI THEOREM WITH TRAJECTORIES [J].
Albareda, G. ;
Traversa, F. L. ;
Benali, A. ;
Oriols, X. .
FLUCTUATION AND NOISE LETTERS, 2012, 11 (03)
[5]   Many-particle Hamiltonian for open systems with full Coulomb interaction: Application to classical and quantum time-dependent simulations of nanoscale electron devices [J].
Albareda, G. ;
Sune, J. ;
Oriols, X. .
PHYSICAL REVIEW B, 2009, 79 (07)
[6]   The multiconfiguration time-dependent Hartree (MCTDH) method:: a highly efficient algorithm for propagating wavepackets [J].
Beck, MH ;
Jäckle, A ;
Worth, GA ;
Meyer, HD .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 324 (01) :1-105
[7]   Quantum dynamics of the femtosecond photoisomerization of retinal in bacteriorhodopsin [J].
Ben-Nun, M ;
Molnar, F ;
Lu, H ;
Phillips, JC ;
Martínez, TJ ;
Schulten, K .
FARADAY DISCUSSIONS, 1998, 110 :447-462
[8]   Need for relativistic corrections in the analysis of spatial adiabatic passage of matter waves [J].
Benseny, A. ;
Baguda, J. ;
Oriols, X. ;
Mompart, J. .
PHYSICAL REVIEW A, 2012, 85 (05)
[9]   Approaches to the approximate treatment of complex molecular systems by the multiconfiguration time-dependent Hartree method [J].
Burghardt, I ;
Meyer, HD ;
Cederbaum, LS .
JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (07) :2927-2939
[10]  
Domcke W., 2007, Advances in Chemical Physics, P1