Pinning, Retraction, and Terracing of Evaporating Droplets Containing Nanoparticles

被引:94
作者
Craster, R. V. [1 ]
Matar, O. K. [2 ]
Sefiane, K. [3 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, London SW7 2AZ, England
[3] Univ Edinburgh, Sch Engn & Elect, Edinburgh EH9 3JL, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
ANIONIC SURFACTANT SOLUTIONS; VOLATILE LIQUID DROPLETS; HARD-SPHERE; POLYMER-SOLUTIONS; DEPLETION FORCES; FILMS; DRIVEN; DYNAMICS; DRAINAGE; FLUIDS;
D O I
10.1021/la8037704
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We consider the dynamics of a slender, evaporating droplet containing nanoparticles. We use lubrication theory to derive a coupled system of equations that govern the film thickness and the concentration of nanoparticles. These equations account for capillarity, Marangoni stresses, evaporation, and disjoining pressure; the nanoparticle-induced structural component of the disjoining pressure is also considered. Contact line singularities are avoided through the adsorption of ultrathin films wherein evaporation is suppressed by the disjoining pressure; a similar approach has recently been used by Ajaev [J. Fluid Mech. 2005, 528, 279-296] who has built on the previous work of Moosman and Homsy [J. Colloid Interface Sci. 1980, 73, 212-223]. The results of our numerical simulations indicate that, depending on the value of system parameters, the droplet exhibits a variety of different behaviours, which include spreading, evaporation-driven retraction, contact line pinning, and "terrace" formation.
引用
收藏
页码:3601 / 3609
页数:9
相关论文
共 59 条
[1]   STRIPE PATTERNS FORMED ON A GLASS-SURFACE DURING DROPLET EVAPORATION [J].
ADACHI, E ;
DIMITROV, AS ;
NAGAYAMA, K .
LANGMUIR, 1995, 11 (04) :1057-1060
[2]   Spreading of thin volatile liquid droplets on uniformly heated surfaces [J].
Ajaev, VS .
JOURNAL OF FLUID MECHANICS, 2005, 528 :279-296
[3]   Steady vapor bubbles in rectangular microchannels [J].
Ajaev, VS ;
Homsy, GM .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2001, 240 (01) :259-271
[4]   Plasticity and geophysical flows: A review [J].
Ancey, Christophe .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2007, 142 (1-3) :4-35
[5]   THE SPREADING OF VOLATILE LIQUID DROPLETS ON HEATED SURFACES [J].
ANDERSON, DM ;
DAVIS, SH .
PHYSICS OF FLUIDS, 1995, 7 (02) :248-265
[6]  
[Anonymous], 1992, INTERMOLECULAR SURFA
[7]   ON INTERACTION BETWEEN 2 BODIES IMMERSED IN A SOLUTION OF MACROMOLECULES [J].
ASAKURA, S ;
OOSAWA, F .
JOURNAL OF CHEMICAL PHYSICS, 1954, 22 (07) :1255-1256
[8]   OSCILLATORY SOLVATION FORCES - A COMPARISON OF THEORY AND EXPERIMENT [J].
ATTARD, P ;
PARKER, JL .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (12) :5086-5093
[9]   INTERACTION FREE-ENERGY BETWEEN PLANAR WALLS IN DENSE FLUIDS - AN ORNSTEIN-ZERNIKE APPROACH WITH RESULTS FOR HARD-SPHERE, LENNARD-JONES, AND DIPOLAR SYSTEMS [J].
ATTARD, P ;
BERARD, DR ;
URSENBACH, CP ;
PATEY, GN .
PHYSICAL REVIEW A, 1991, 44 (12) :8224-8234
[10]   The yield stress -: a review or 'παντα ρει' -: everything flows? [J].
Barnes, HA .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1999, 81 (1-2) :133-178