Approximation in Morrey spaces

被引:29
作者
Almeida, Alexandre [1 ]
Samko, Stefan [2 ]
机构
[1] Univ Aveiro, Dept Math, Ctr R&D Math & Applicat, P-3810193 Aveiro, Portugal
[2] Univ Algarve, Dept Math, Campus Gambelas, P-8005139 Faro, Portugal
基金
俄罗斯基础研究基金会;
关键词
Morrey space; Vanishing properties; Approximation; Convolution;
D O I
10.1016/j.jfa.2016.11.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new subspace of Morrey spaces whose elements can be approximated by infinitely differentiable compactly supported functions is introduced. Consequently, we give an explicit description of the closure of the set of such functions in Morrey spaces. A generalisation of known embeddings of Morrey spaces into weighted Lebesgue spaces is also obtained. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:2392 / 2411
页数:20
相关论文
共 20 条
[11]  
Pick L., 2013, De Gruyter Ser. Nonlinear Anal. Appl., V14, pxvi+479
[12]  
Rafeiro H., 2013, The Vladimir Rabinovich Anniversary, V228, P293
[13]   Morrey spaces, their duals and preduals [J].
Rosenthal, Marcel ;
Triebel, Hans .
REVISTA MATEMATICA COMPLUTENSE, 2015, 28 (01) :1-30
[14]   Maximal, potential and singular operators in vanishing generalized Morrey spaces [J].
Samko, Natasha .
JOURNAL OF GLOBAL OPTIMIZATION, 2013, 57 (04) :1385-1399
[15]   Morrey Spaces and Related Function Spaces [J].
Sawano, Yoshihiro ;
Gunawan, Hendra ;
Guliyev, Vagif ;
Tanaka, Hitoshi .
JOURNAL OF FUNCTION SPACES, 2014, 2014
[16]  
Taylor ME., 2000, Math. Surveys Monogr.
[17]  
Triebel H, 2013, EMS TRACTS MATH, V20, P1, DOI 10.4171/123
[18]  
Vitanza C., 1990, Proceedings of Real Analysis and Methods of Elliptic Partial Differential Equations, P147
[19]  
VITANZA C, 1993, RIC MAT, V42, P265
[20]   MORREY SPACE [J].
ZORKO, CT .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 98 (04) :586-592