Synchronization of Fractional Stochastic Chaotic Systems via Mittag-Leffler Function

被引:8
|
作者
Sathiyaraj, T. [1 ,2 ]
Feckan, Michal [3 ,4 ]
Wang, JinRong [1 ]
机构
[1] Guizhou Univ, Dept Math, Guiyang 550025, Peoples R China
[2] UCSI Univ, Inst Actuarial Sci & Data Analyt, Kuala Lumpur 56000, Malaysia
[3] Comenius Univ, Fac Math Phys & Informat, Dept Math Anal & Numer Math, Bratislava 84248, Slovakia
[4] Slovak Acad Sci, Math Inst, Stefanikova 49, Bratislava 81473, Slovakia
关键词
fractional calculus; stochastic calculus; stability analysis; synchronization theory; NEURAL-NETWORKS;
D O I
10.3390/fractalfract6040192
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is involved with synchronization of fractional order stochastic systems in finite dimensional space, and we have tested its time response and stochastic chaotic behaviors. Firstly, we give a representation of solution for a stochastic fractional order chaotic system. Secondly, some useful sufficient conditions are investigated by using matrix type Mittag-Leffler function, Jacobian matrix via stochastic process, stability analysis and feedback control technique to assure the synchronization of stochastic error system. Thereafter, numerical illustrations are provided to verify the theoretical parts.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Mittag-Leffler synchronization of fractional-order uncertain chaotic systems
    Wang Qiao
    Ding Dong-Sheng
    Qi Dong-Lian
    CHINESE PHYSICS B, 2015, 24 (06)
  • [2] Global Mittag-Leffler boundedness and synchronization for fractional-order chaotic systems
    Jian, Jigui
    Wu, Kai
    Wang, Baoxian
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 540
  • [3] Mittag-Leffler stability, control, and synchronization for chaotic generalized fractional-order systems
    Abed-Elhameed, Tarek M.
    Aboelenen, Tarek
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2022, 2022 (01):
  • [4] The extended Mittag-Leffler function via fractional calculus
    Rahman, Gauhar
    Baleanu, Dumitru
    Al Qurashi, Maysaa
    Purohit, Sunil Dutt
    Mubeen, Shahid
    Arshad, Muhammad
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (08): : 4244 - 4253
  • [5] Chaos Synchronization for Uncertain Fractional Order Chaotic Systems based on Mittag-Leffler Fractional Sliding Mode Control
    Wang, Qiao
    Shan, Kemeng
    Qi, Donglian
    Yu, Miao
    Li, Chaoyong
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 11345 - 11350
  • [6] A STUDY ON GENERALIZED MITTAG-LEFFLER FUNCTION VIA FRACTIONAL CALCULUS
    Gurjar, Meena Kumari
    Prajapati, Jyotindra C.
    Gupta, Kantesh
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2014, 5 (03): : 6 - 13
  • [7] Matrix Mittag-Leffler function in fractional systems and its computation
    Matychyn, I.
    Onyshchenko, V.
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2018, 66 (04) : 495 - 500
  • [8] Mittag-Leffler function and fractional differential equations
    Katarzyna Górska
    Ambra Lattanzi
    Giuseppe Dattoli
    Fractional Calculus and Applied Analysis, 2018, 21 : 220 - 236
  • [9] Fractional Calculus of a Unified Mittag-Leffler Function
    Prajapati, J. C.
    Nathwani, B. V.
    UKRAINIAN MATHEMATICAL JOURNAL, 2015, 66 (08) : 1267 - 1280
  • [10] Mittag–Leffler synchronization of fractional-order uncertain chaotic systems
    王乔
    丁冬生
    齐冬莲
    Chinese Physics B, 2015, 24 (06) : 229 - 234