Evidence of short-range electron transfer of a redox enzyme on graphene oxide electrodes

被引:54
作者
Martins, Marccus V. A. [1 ]
Pereira, Andressa R. [2 ]
Luz, Roberto A. S. [1 ]
Iost, Rodrigo M. [2 ]
Crespitho, Frank N. [2 ]
机构
[1] Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210170 Santo Andre, SP, Brazil
[2] Univ Sao Paulo, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
CHEMICALLY-MODIFIED ENZYMES; SELF-ASSEMBLED MONOLAYERS; GLASSY-CARBON ELECTRODE; GLUCOSE-OXIDASE; GRAPHITE OXIDE; DIRECT ELECTROCHEMISTRY; ASPERGILLUS-NIGER; OXIDATION-REDUCTION; GOLD NANOPARTICLES; RAMAN-SPECTROSCOPY;
D O I
10.1039/c4cp00452c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Direct electron transfer (DET) between redox enzymes and electrode surfaces is of growing interest and an important strategy in the development of biofuel cells and biosensors. Among the nanomaterials utilized at electrode/enzyme interfaces to enhance the electronic communication, graphene oxide (GO) has been identified as a highly promising candidate. It is postulated that GO layers decrease the distance between the flavin cofactor (FAD/FADH(2)) of the glucose oxidase enzyme (GOx) and the electrode surface, though experimental evidence concerning the distance dependence of the rate constant for heterogeneous electron-transfer (k(het)) has not yet been observed. In this work, we report the experimentally observed DET of the GOx enzyme adsorbed on flexible carbon fiber (FCF) electrodes modified with GO (FCF-GO), where the k(het) between GO and electroactive GOx has been measured at a structurally well-defined interface. The curves obtained from the Marcus theory were used to obtain k(het), by using the model proposed by Chidsey. In agreement with experimental data, this model proved to be useful to systematically probe the dependence of electron transfer rates on distance, in order to provide an empirical basis to understand the origin of interfacial DET between GO and GOx. We also demonstrate that the presence of GO at the enzyme/electrode interface diminishes the activation energy by decreasing the distance between the electrode surface and FAD/FADH(2).
引用
收藏
页码:17426 / 17436
页数:11
相关论文
共 65 条
[1]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[2]   Glucose oxidase - An overview [J].
Bankar, Sandip B. ;
Bule, Mahesh V. ;
Singhal, Rekha S. ;
Ananthanarayan, Laxmi .
BIOTECHNOLOGY ADVANCES, 2009, 27 (04) :489-501
[3]   FREE-ENERGY AND TEMPERATURE-DEPENDENCE OF ELECTRON-TRANSFER AT THE METAL-ELECTROLYTE INTERFACE [J].
CHIDSEY, CED .
SCIENCE, 1991, 251 (4996) :919-922
[4]   Biofuel cells - Recent advances and applications [J].
Davis, Frank ;
Higson, Seamus P. J. .
BIOSENSORS & BIOELECTRONICS, 2007, 22 (07) :1224-1235
[5]   ELECTRICAL COMMUNICATION BETWEEN REDOX CENTERS OF GLUCOSE-OXIDASE AND ELECTRODES VIA ELECTROSTATICALLY AND COVALENTLY BOUND REDOX POLYMERS [J].
DEGANI, Y ;
HELLER, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (06) :2357-2358
[6]   DIRECT ELECTRICAL COMMUNICATION BETWEEN CHEMICALLY MODIFIED ENZYMES AND METAL-ELECTRODES .2. METHODS FOR BONDING ELECTRON-TRANSFER RELAYS TO GLUCOSE-OXIDASE AND D-AMINO-ACID OXIDASE [J].
DEGANI, Y ;
HELLER, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1988, 110 (08) :2615-2620
[7]   DIRECT ELECTRICAL COMMUNICATION BETWEEN CHEMICALLY MODIFIED ENZYMES AND METAL-ELECTRODES .1. ELECTRON-TRANSFER FROM GLUCOSE-OXIDASE TO METAL-ELECTRODES VIA ELECTRON RELAYS, BOUND COVALENTLY TO THE ENZYME [J].
DEGANI, Y ;
HELLER, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (06) :1285-1289
[8]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[9]   Electrochemistry of redox-active self-assembled monolayers [J].
Eckermann, Amanda L. ;
Feld, Daniel J. ;
Shaw, Justine A. ;
Meade, Thomas J. .
COORDINATION CHEMISTRY REVIEWS, 2010, 254 (15-16) :1769-1802
[10]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57