A Subgrid-Scale Stabilized Finite Element Method for Multicomponent Reactive Transport through Porous Media

被引:9
|
作者
Yang, Changbing [1 ]
Samper, Javier [2 ]
机构
[1] Univ Texas Austin, Bur Econ Geol, Austin, TX 78758 USA
[2] Univ A Coruna, La Coruna 15192, Spain
关键词
Algebraic subgrid-scale approximation; Stabilized method; Multicomponent reactive transport; Finite element; Porous media; Analytical solution; COMPUTATIONAL FLUID-DYNAMICS; NAVIER-STOKES EQUATIONS; INCOMPRESSIBLE FLOWS; BOUNDARY-CONDITIONS; CATION-EXCHANGE; FORMULATION; MODELS; CONVECTION; SYSTEMS; APPROXIMATION;
D O I
10.1007/s11242-008-9288-7
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Standard Galerkin finite element methods (GFEM) lack stability in solving advection-dominated solute transport in porous media. They usually require prohibitively fine grids and extremely small time steps to solve for advection-dominated problems. The algebraic subgrid-scale stabilized (ASGS) finite element method has been proved to overcome such problems for single-species reactive transport. Its potential for dealing with multicomponent reactive transport has not yet been explored. Here we present a numerical formulation of ASGS for steady and transient multicomponent reactive transport. Subgrid-scale transport equations are solved first by using an ASGS approximation and their solutions are substituted back into the grid-scale equations. A sequential iteration approach (SIA) is used to solve for coupled transport and chemical equations. Coupling of ASGS and SIA, ASGS+SIA, has been implemented in a reactive transport code, CORE2D V4, and verified for conservative solute transport. ASGS+SIA has been tested for a wide range of 1-D transient multicomponent reactive transport problems involving different types of chemical reactions such as: (1) Kinetically controlled aqueous species degradation, (2) Kinetic mineral dissolution, (3) Serial-parallel decay networks, and (4) Cation exchange and pyrite oxidation at local equilibrium. ASGS+SIA always provides accurate solutions and therefore offers an efficient option to solve for advection-dominated multicomponent reactive transport problems.
引用
收藏
页码:101 / 126
页数:26
相关论文
共 50 条
  • [1] A Subgrid-Scale Stabilized Finite Element Method for Multicomponent Reactive Transport through Porous Media
    Changbing Yang
    Javier Samper
    Transport in Porous Media, 2009, 78 : 101 - 126
  • [2] Modelling multicolnponent reactive transport in porous media with subgrid scale stabilized finite elements
    Yang, CB
    Samper, J
    COMPUTATIONAL METHODS IN WATER RESOURCES, VOLS 1 AND 2, 2004, 55 : 291 - 302
  • [3] Spatial approximation of the radiation transport equation using a subgrid-scale finite element method
    Avila, Matias
    Codina, Ramon
    Principe, Javier
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (5-8) : 425 - 438
  • [4] A Subgrid-Scale Model for Turbulent Flow in Porous Media
    Nima Fallah Jouybari
    T. Staffan Lundström
    Transport in Porous Media, 2019, 129 : 619 - 632
  • [5] A Subgrid-Scale Model for Turbulent Flow in Porous Media
    Jouybari, Nima Fallah
    Lundstrom, T. Staffan
    TRANSPORT IN POROUS MEDIA, 2019, 129 (03) : 619 - 632
  • [6] The Inner-Element Subgrid Scale Finite Element Method for the Boltzmann Transport Equation
    Buchan, Andrew G.
    Candy, Adam S.
    Merton, Simon R.
    Pain, Christopher C.
    Hadi, Justin I.
    Eaton, Matthew D.
    Goddard, Anthony J. H.
    NUCLEAR SCIENCE AND ENGINEERING, 2010, 164 (02) : 105 - 121
  • [7] Lagrangian scheme to model subgrid-scale mixing and spreading in heterogeneous porous media
    Herrera, P. A.
    Cortinez, J. M.
    Valocchi, A. J.
    WATER RESOURCES RESEARCH, 2017, 53 (04) : 3302 - 3318
  • [8] Finite element analysis of laminar and turbulent flows using LES and subgrid-scale models
    Popiolek, TL
    Awruch, AM
    Teixeira, PRF
    APPLIED MATHEMATICAL MODELLING, 2006, 30 (02) : 177 - 199
  • [9] Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media
    Kang, Qinjun
    Lichtner, Peter C.
    Zhang, Dongxiao
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2006, 111 (B5)
  • [10] A MULTISCALE FINITE ELEMENT FRAMEWORK FOR REACTIVE CONTAMINANT TRANSPORT IN HETEROGENEOUS POROUS MEDIA
    Nakshatrala, K. B.
    Valocchi, A. J.
    IMECE 2008: MECHANICS OF SOLIDS, STRUCTURES AND FLUIDS, VOL 12, 2009, : 45 - 46