Runaway discharges in TCABR

被引:17
作者
Kuznetsov, YK [1 ]
Galvao, RMO [1 ]
Bellintani, V [1 ]
Ferreira, AA [1 ]
Fonseca, AMM [1 ]
Nascimento, IC [1 ]
Ruchko, LF [1 ]
Saettone, EAO [1 ]
Tsypin, VS [1 ]
Usuriaga, OC [1 ]
机构
[1] Univ Sao Paulo, Inst Phys, BR-05315970 Sao Paulo, Brazil
关键词
D O I
10.1088/0029-5515/44/5/007
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
It is found in experiments carried out in Tokamak Chauffage Alfven Bresilien (TCABR) that two regimes of runaway discharges (RADs) with very different characteristics are possible. The RAD-I regime, which is similar to that observed in other tokamaks, can be obtained by a gradual transfer from a normal resistive to a RAD by decreasing the plasma density. This regime can be well understood using the Dreicer theory of runaway generation. The total toroidal current contains a substantial resistive component and the discharge retains some features of standard tokamak discharges. The second runaway regime, RAD-II, was recently discovered in the TCABR tokamak (Galvao R.M.O. et al 2001 Plasma Phys. Control. Fusion 43 1181). The RAD-II regime starts just from the beginning of the discharge, provided that certain initial conditions are fulfilled and, in this case, the runaway tail carries almost the full toroidal current. The background plasma is cold and detached from the limiter due to the recombination process. The primary Dreicer process is suppressed in the RAD-II and the secondary avalanche process dominates, even at the start-up phase, in the generation of the toroidal current. It is possible to trigger a transition from the RAD-I to the RAD-II regime using plasma cooling by gas puffing. The experimental results are shown to be in reasonable agreement with theoretical predictions based on the runaway avalanche process.
引用
收藏
页码:631 / 644
页数:14
相关论文
共 33 条
[1]   STABILITY OF A RUNAWAY ELECTRON-BEAM [J].
BESEDIN, NT ;
PANKRATOV, IM .
NUCLEAR FUSION, 1986, 26 (06) :807-812
[2]  
BESEDIN PT, 1986, SOV J PLASMA PHYS, V12, P436
[3]   Fokker-Planck simulations of knock-on electron runaway avalanche and bursts in tokamaks [J].
Chiu, SC ;
Rosenbluth, MN ;
Harvey, RW ;
Chan, VS .
NUCLEAR FUSION, 1998, 38 (11) :1711-1721
[4]   RUNAWAY ELECTRONS IN AN IMPURE PLASMA [J].
COHEN, RH .
PHYSICS OF FLUIDS, 1976, 19 (02) :239-244
[5]   RELATIVISTIC LIMITATIONS ON RUNAWAY ELECTRONS [J].
CONNOR, JW ;
HASTIE, RJ .
NUCLEAR FUSION, 1975, 15 (03) :415-424
[6]   ELECTRON AND ION RUNAWAY IN A FULLY IONIZED GAS .1. [J].
DREICER, H .
PHYSICAL REVIEW, 1959, 115 (02) :238-249
[7]   Whistler instability driven by relativistic electron tail in tokamaks [J].
Elfimov, AG ;
Galvao, RMO .
PLASMA PHYSICS AND CONTROLLED FUSION, 2003, 45 (11) :L63-L70
[8]   LONG-PULSE SUPRATHERMAL DISCHARGES IN THE ASDEX TOKAMAK [J].
FUSSMANN, G ;
CAMPBELL, D ;
EBERHAGEN, A ;
ENGELHARDT, W ;
KARGER, F ;
KEILHACKER, M ;
KLUBER, O ;
LACKNER, K ;
SESNIC, S ;
WAGNER, F ;
BEHRINGER, K ;
GEHRE, O ;
GERNHARDT, J ;
GLOCK, E ;
HAAS, G ;
KORNHERR, M ;
LISITANO, G ;
MAYER, HM ;
MEISEL, D ;
MULLER, R ;
MURMANN, H ;
NIEDERMEYER, H ;
POSCHENRIEDER, W ;
RAPP, H ;
RUHS, N ;
SCHNEIDER, F ;
SILLER, G ;
STEUER, KH .
PHYSICAL REVIEW LETTERS, 1981, 47 (14) :1004-1007
[9]   MOTION OF RUNAWAY ELECTRONS IN MOMENTUM SPACE [J].
FUSSMANN, G .
NUCLEAR FUSION, 1979, 19 (03) :327-334
[10]   Alfven wave heating and runaway discharges maintained by the avalanche effect in TCABR [J].
Galvao, RMO ;
Bellintani, V ;
Bengtson, RD ;
Elfimov, AG ;
Elizondo, JI ;
Fagundes, AN ;
Ferreira, AA ;
Fonseca, AMM ;
Kuznetsov, YK ;
Lerche, EA ;
Nascimento, IC ;
Ruchko, LF ;
de Sá, WP ;
Saettone, EA ;
Sanada, E ;
Severo, JHF ;
da Silva, RP ;
Tsypin, VS ;
Usuriaga, OC ;
Vannucci, A .
PLASMA PHYSICS AND CONTROLLED FUSION, 2001, 43 :A299-A312