Bistable traveling waves for monotone semiflows with applications

被引:178
作者
Fang, Jian [1 ,2 ]
Zhao, Xiao-Qiang [2 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Monotone semiflows; traveling waves; bistable dynamics; periodic habitat; FRONT PROPAGATION; DIFFUSION EQUATIONS; CONVOLUTION MODEL; STABLE EQUILIBRIA; SPREADING SPEEDS; STABILITY; EXISTENCE; SYSTEMS; BEHAVIOR; GROWTH;
D O I
10.4171/JEMS/556
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of traveling waves for monotone evolution systems of bistable type. In an abstract setting, we establish the existence of traveling waves for discrete time and continuous-time monotone semiflows in homogeneous and periodic habitats. The results are then extended to monotone semiflows with weak compactness. We also apply the theory to four classes of evolution systems.
引用
收藏
页码:2243 / 2288
页数:46
相关论文
共 51 条
[1]   Periodic traveling waves and locating oscillating patterns in multidimensional domains [J].
Alikakos, ND ;
Bates, PW ;
Chen, XF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (07) :2777-2805
[2]  
[Anonymous], 1991, J DYN DIFFER EQU
[3]  
[Anonymous], 1979, Publ Res Inst Math Sci, DOI DOI 10.2977/PRIMS/1195188180
[4]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[5]   Traveling waves in a convolution model for phase transitions [J].
Bates, PW ;
Fife, PC ;
Ren, XF ;
Wang, XF .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 138 (02) :105-136
[6]   A discrete convolution model for phase transitions [J].
Bates, PW ;
Chmaj, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 150 (04) :281-305
[7]   Analysis of the periodically fragmented environment model: I - Species persistence [J].
Berestycki, H ;
Hamel, F ;
Roques, L .
JOURNAL OF MATHEMATICAL BIOLOGY, 2005, 51 (01) :75-113
[8]  
Berestycki H, 2005, J EUR MATH SOC, V7, P173
[9]   TRAVELING FRONTS IN CYLINDERS [J].
BERESTYCKI, H ;
NIRENBERG, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (05) :497-572
[10]   Front propagation in periodic excitable media [J].
Berestycki, H ;
Hamel, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (08) :949-1032