A Finite-Difference Time-Domain Analysis of Fiber Bragg Gratings

被引:0
作者
Nacaratti, Davi Pontes [1 ]
Samad, Ricardo Elgul [2 ]
Motta, Claudio Costa [1 ]
机构
[1] Univ Sao Paulo, Sao Paulo, Brazil
[2] IPEN CNEN SP, Sao Paulo, Brazil
来源
2022 SBFOTON INTERNATIONAL OPTICS AND PHOTONICS CONFERENCE (SBFOTON IOPC) | 2022年
关键词
Fiber Bragg Grating; FDTD; reflectivity;
D O I
10.1109/SBFotonIOPC54450.2022.9992634
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An analytical formulation and modeling of an optical fiber Bragg gratings has been developed and is reported in this paper. Supported by the Finite-Difference Time-Domain (FDTD) method, it was possible to set a 1018 nm bragg grating and simulate an electromagnetic field going through this periodic refractive-index device to obtain reflectivity, transmittivity, and bandwidth. Moreover, the model is applied to analyze the influence of structural parameters of fiber gratings, such as length, grating period, and refractive index modulation on its spectral response.
引用
收藏
页数:4
相关论文
共 50 条
[31]   Angora: A Free Software Package for Finite-Difference Time-Domain Electromagnetic Simulation [J].
Capoglu, Ilker R. ;
Taflove, Allen ;
Backman, Vadim .
IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2013, 55 (04) :80-93
[32]   A Lagrangian approach for the handling of curved boundaries in the finite-difference in time-domain method [J].
Russer, Johannes A. ;
Sumant, Prasad S. ;
Cangellaris, Andreas C. .
2007 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-6, 2007, :716-719
[33]   Understanding the Coupling Mechanism of Gold Nanostructures by Finite-Difference Time-Domain Method [J].
Sahu, Aditya K. ;
Raj, Satyabrata .
INTERNATIONAL JOURNAL OF NANOSCIENCE, 2022, 21 (01)
[34]   A loaded technique for modeling oblique wire in finite-difference time-domain method [J].
Sun, Dongyang ;
Mao, Congguang ;
Du, Chuanbao ;
Bao, Weimin ;
Li, Xiaoping .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2020, 62 (10) :3151-3156
[35]   Simulation of optical devices using parallel finite-difference time-domain methods [J].
Li, K ;
Kong, FM ;
Mei, LM ;
Liu, X .
PASSIVE COMPONENTS AND FIBER-BASED DEVICES II, PT 1 AND 2, 2005, 6019 :U627-U634
[36]   Effective Modeling of Graphene as a Conducting Sheet in the Finite-Difference Time-Domain Method [J].
Nayyeri, Vahid ;
Soleimani, Mohammad ;
Ramahi, Omar M. .
2013 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2013, :906-+
[37]   3-D Domain Decomposition Based Hybrid Finite-Difference Time-Domain/Finite-Element Time-Domain Method With Nonconformal Meshes [J].
Sun, Qingtao ;
Ren, Qiang ;
Zhan, Qiwei ;
Liu, Qing Huo .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2017, 65 (10) :3682-3688
[38]   A Method to Model Thin Conductive Layers in the Finite-Difference Time-Domain Method [J].
Nayyeri, Vahid ;
Soleimani, Mohammad ;
Ramahi, Omar M. .
IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2014, 56 (02) :385-392
[39]   A HIGHER-ORDER FINITE-DIFFERENCE TIME-DOMAIN METHOD FOR SOUND PROPAGATION [J].
Huang, Wuqiong ;
Lu, Yigang .
PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), 2016, :136-140
[40]   Finite-Difference Time-Domain (FDTD) Model for Traveling-Wave Photodetectors [J].
Kong, Soon-Cheol ;
Choi, Young-Wan .
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2009, 6 (11) :2380-2387