Automatic segmentation of temporal bone structures from clinical conventional CT using a CNN approach

被引:20
作者
Lv, Yi [1 ]
Ke, Jia [2 ]
Xu, Ying [1 ]
Shen, Yu [1 ]
Wang, Junchen [1 ,3 ]
Wang, Jiang [2 ]
机构
[1] Beihang Univ, Sch Mech Engn & Automat, Beijing 100191, Peoples R China
[2] Peking Univ Third Hosp, Dept Otorhinolaryngol Head & Neck Surg, Beijing, Peoples R China
[3] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
cochlear implant surgery; convolutional neural network; medical image segmentation; temporal bone structure; NEURAL-NETWORKS; DEEP;
D O I
10.1002/rcs.2229
中图分类号
R61 [外科手术学];
学科分类号
摘要
Background Automatic segmentation of temporal bone structures from patients' conventional computed tomography (CT) data plays an important role in the image-guided cochlear implant surgery. Existing convolutional neural network approaches have difficulties in segmenting such small tubular structures. Methods We propose a light-weight three-dimensional convolutional neural network referred to as W-Net to achieve multiobjective segmentation of temporal bone structures including the cochlear labyrinth, ossicular chain and facial nerve from conventional temporal bone CT images. Data augmentation with morphological enhancement is proposed to increase the segmentation accuracy of small tubular structures. Evaluation against the state-of-the-art methods is performed. Results Our method achieved mean Dice similarity coefficients (DSCs) of 0.90, 0.85 and 0.77 for the cochlear labyrinth, ossicular chain and facial nerve, respectively. These results were also close to the DSCs between human expert annotators (0.91, 0.91 and 0.72). Conclusions Our method achieves human-level accuracy in the segmentation of the cochlear labyrinth, ossicular chain and facial nerve.
引用
收藏
页数:9
相关论文
共 34 条
[1]  
[Anonymous], 2015, ACS SYM SER
[2]  
[Anonymous], 2019, IEEE Transactions On Medical Imaging, DOI DOI 10.1109/TMI.2019.2911588
[3]   Performance measure characterization for evaluating neuroimage segmentation algorithms [J].
Chang, Herng-Hua ;
Zhuang, Audrey H. ;
Valentino, Daniel J. ;
Chu, Woei-Chyn .
NEUROIMAGE, 2009, 47 (01) :122-135
[4]  
Cicek O, 2016, Medical Image Computing and ComputerAssisted Intervention
[5]   Kidney cortex segmentation in 2D CT with U-Nets ensemble aggregation [J].
Couteaux, V ;
Si-Mohamed, S. ;
Renard-Penna, R. ;
Nempont, O. ;
Lefevre, T. ;
Popoff, A. ;
Pizaine, G. ;
Villain, N. ;
Bloch, I ;
Behr, J. ;
Bellin, M-F ;
Roy, C. ;
Rouviere, O. ;
Montagne, S. ;
Lassau, N. ;
Boussel, L. .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2019, 100 (04) :211-217
[6]   Image Segmentation-Based Multi-Focus Image Fusion Through Multi-Scale Convolutional Neural Network [J].
Du, Chaoben ;
Gao, Shesheng .
IEEE ACCESS, 2017, 5 :15750-15761
[7]   Multi-atlas segmentation of the facial nerve from clinical CT for virtual reality simulators [J].
Gare, Bradley M. ;
Hudson, Thomas ;
Rohani, Seyed A. ;
Allen, Daniel G. ;
Agrawal, Sumit K. ;
Ladak, Hanif M. .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2020, 15 (02) :259-267
[8]   Robot-assisted three-dimensional registration for cochlear implant surgery using a common-path swept-source optical coherence tomography probe [J].
Gurbani, Saumya S. ;
Wilkening, Paul ;
Zhao, Mingtao ;
Gonenc, Berk ;
Cheon, Gyeong Woo ;
Iordachita, Iulian I. ;
Chien, Wade ;
Taylor, Russell H. ;
Niparko, John K. ;
Kang, Jin U. .
JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (05)
[9]  
HE K, 2016, IDENTITY MAPPINGS DE, DOI [10.1007/978-3-319-46493-0_38, DOI 10.1007/978-3-319-46493-0_38, DOI 10.1109/CVPR.2016.90]
[10]   Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges [J].
Hesamian, Mohammad Hesam ;
Jia, Wenjing ;
He, Xiangjian ;
Kennedy, Paul .
JOURNAL OF DIGITAL IMAGING, 2019, 32 (04) :582-596