Cacti with the smallest, second smallest, and third smallest Gutman index

被引:19
作者
Chen, Shubo [1 ]
机构
[1] Hunan City Univ, Coll Math, Yiyang 413000, Hunan, Peoples R China
关键词
Gutman index; Degree distance; Extremal graph;
D O I
10.1007/s10878-014-9743-z
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Gutman index (also known as Schultz index of the second kind) of a graph is defined as . A graph is called a cactus if each block of is either an edge or a cycle. Denote by the set of connected cacti possessing vertices and cycles. In this paper, we give the first three smallest Gutman indices among graphs in , the corresponding extremal graphs are characterized as well.
引用
收藏
页码:327 / 332
页数:6
相关论文
共 12 条
[1]  
Andova V, 2012, MATCH-COMMUN MATH CO, V67, P515
[2]   ON THE INDEX OF CACTUSES WITH n VERTICES [J].
Borovicanin, Bojana ;
Petrovic, Miroslav .
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2006, 79 (93) :13-18
[3]  
Chen S, ARS COMBINA IN PRESS
[4]  
Chen SB, 2010, MATCH-COMMUN MATH CO, V64, P767
[5]   The edge-Wiener index of a graph [J].
Dankelmann, P. ;
Gutman, I. ;
Mukwembi, S. ;
Swart, H. C. .
DISCRETE MATHEMATICS, 2009, 309 (10) :3452-3457
[6]  
Feng LH, 2011, MATCH-COMMUN MATH CO, V66, P699
[7]   SELECTED PROPERTIES OF THE SCHULTZ MOLECULAR TOPOLOGICAL INDEX [J].
GUTMAN, I .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1994, 34 (05) :1087-1089
[8]  
LIU H, 2007, MATCH COMMUN MATH CO, V58, P193
[9]  
Lu M, 2006, MATCH-COMMUN MATH CO, V56, P551
[10]  
Mukwembi S, 2012, MATCH-COMMUN MATH CO, V68, P343