PERMANENCE IN POLYMATRIX REPLICATORS

被引:1
|
作者
Peixe, Telmo [1 ]
机构
[1] Univ Lisbon, ISEG Lisbon Sch Econ & Management, REM Res Econ & Math, CEMAPRE Ctr Matemat Aplicada Previsao & Decisdo E, Lisbon, Portugal
来源
JOURNAL OF DYNAMICS AND GAMES | 2021年 / 8卷 / 01期
关键词
Permanence; replicator equation; Lotka-Volterra; polymatrix replicator; evolutionary game theory; BEHAVIOR; THEOREM;
D O I
10.3934/jdg.2020032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Generally a biological system is said to be permanent if under small perturbations none of the species goes to extinction. In 1979 P. Schuster, K. Sigmund, and R. Wolff [15] introduced the concept of permanence as a stability notion for systems that models the self-organization of biological macromolecules. After, in 1987 W. Jansen [9], and J. Hofbauer and K. Sigmund [6] give sufficient conditions for permanence in the replicator equations. In this paper we extend these results for polymatrix replicators.
引用
收藏
页码:21 / 34
页数:14
相关论文
共 50 条
  • [1] Persistent strange attractors in 3D polymatrix replicators
    Peixe, Telmo
    Rodrigues, Alexandre
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 438
  • [2] Finite Population Trust Game Replicators
    Greenwood, Garrison
    Abbass, Hussein
    Petraki, Eleni
    ARTIFICIAL LIFE AND COMPUTATIONAL INTELLIGENCE, ACALCI 2016, 2016, 9592 : 324 - 335
  • [3] A permanence theorem for local dynamical systems
    Fonda, Alessandro
    Gidoni, Paolo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 : 73 - 81
  • [4] Remarks on stochastic permanence of population models
    Lv, Jingliang
    Wang, Ke
    Zou, Xiaoling
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (02) : 561 - 571
  • [5] Permanence and extinction for the stochastic SIR epidemic model
    Du, N. H.
    Nhu, N. N.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (11) : 9619 - 9652
  • [6] CONTENTION, INTEGRATION AND PERMANENCE
    Mahfuz, Edson da Cunha
    EN BLANCO-REVISTA DE ARQUITECTURA, 2012, 4 (09): : 118 - 119
  • [7] Permanence can be Defended
    McGee, Andrew
    Gardiner, Dale
    BIOETHICS, 2017, 31 (03) : 220 - 230
  • [8] Relative nonlinearity and permanence
    Kang, Yun
    Chesson, Peter
    THEORETICAL POPULATION BIOLOGY, 2010, 78 (01) : 26 - 35
  • [9] Permanence and extinction for a nonautonomous schistosomiasis model with saturation incidence rate
    Xie, Dehui
    Zhang, Xiangyu
    Yan, Shuixian
    Gao, Shujing
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2015, 8 (02)
  • [10] Permanence and extinction in competitive Lotka-Volterra systems with delays
    Hou, Zhanyuan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (04) : 2130 - 2141