Reproducible and Interpretable Spiculation Quantification for Lung Cancer Screening

被引:11
作者
Choi, Wookjin [1 ,2 ]
Nadeem, Saad [1 ]
Alam, Sadegh R. [1 ]
Deasy, Joseph O. [1 ]
Tannenbaum, Allen [3 ,4 ]
Lu, Wei [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Med Phys, 1275 York Ave, New York, NY 10065 USA
[2] Virginia State Univ, Dept Engn & Comp Sci, 1 Hayden St, Petersburg, VA 23806 USA
[3] SUNY Stony Brook, Dept Comp Sci & Appl Math, Stony Brook, NY 11790 USA
[4] SUNY Stony Brook, Dept Stat, Stony Brook, NY 11790 USA
关键词
Conformal Mapping; Spiculation; Lung Cancer Screening; PULMONARY NODULES; RESOURCE; DATABASE;
D O I
10.1016/j.cmpb.2020.105839
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Spiculations are important predictors of lung cancer malignancy, which are spikes on the surface of the pulmonary nodules. In this study, we proposed an interpretable and parameter-free technique to quantify the spiculation using area distortion metric obtained by the conformal (angle-preserving) spherical parameterization. We exploit the insight that for an angle-preserved spherical mapping of a given nodule, the corresponding negative area distortion precisely characterizes the spiculations on that nodule. We introduced novel spiculation scores based on the area distortion metric and spiculation measures. We also semi-automatically segment lung nodule (for reproducibility) as well as vessel and wall attachment to differentiate the real spiculations from lobulation and attachment. A simple pathological malignancy prediction model is also introduced. We used the publicly-available LIDC-IDRI dataset pathologists (strong-label) and radiologists (weak-label) ratings to train and test radiomics models containing this feature, and then externally validate the models. We achieved AUC = 0.80 and 0.76, respectively, with the models trained on the 811 weakly-labeled LIDC datasets and tested on the 72 strongly-labeled LIDC and 73 LUNGx datasets; the previous best model for LUNGx had AUC = 0.68. The number-of-spiculations feature was found to be highly correlated (Spearman's rank correlation coefficient rho = 0 . 44 ) with the radiologists' spiculation score. We developed a reproducible and interpretable, parameter-free technique for quantifying spiculations on nodules. The spiculation quantification measures was then applied to the radiomics framework for pathological malignancy prediction with reproducible semi-automatic segmentation of nodule. Using our interpretable features (size, attachment, spiculation, lobulation), we were able to achieve higher performance than previous models. In the future, we will exhaustively test our model for lung cancer screening in the clinic. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 34 条
[1]   Results of the Two Incidence Screenings in the National Lung Screening Trial [J].
Aberle, Denise R. ;
DeMello, Sarah ;
Berg, Christine D. ;
Black, William C. ;
Brewer, Brenda ;
Church, Timothy R. ;
Clingan, Kathy L. ;
Duan, Fenghai ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine A. ;
Gierada, David S. ;
Jain, Amanda ;
Jones, Gordon C. ;
Mahon, Irene ;
Marcus, Pamela M. ;
Rathmell, Joshua M. ;
Sicks, JoRean .
NEW ENGLAND JOURNAL OF MEDICINE, 2013, 369 (10) :920-931
[2]   On the Laplace-Beltrami operator and brain surface flattening [J].
Angenent, S ;
Haker, S ;
Tannenbaum, A ;
Kikinis, R .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1999, 18 (08) :700-711
[3]  
Armato S.G., 2015, **DATA OBJECT**, DOI [10.7937/K9/TCIA.2015.LO9QL9SX, DOI 10.7937/K9/TCIA.2015.LO9QL9SX]
[4]  
Armato S.G., 2015, The Cancer Imaging Arch
[5]   LUNGx Challenge for computerized lung nodule classification [J].
Armato, Samuel G., III ;
Drukker, Karen ;
Li, Feng ;
Hadjiiski, Lubomir ;
Tourassi, Georgia D. ;
Engelmann, Roger M. ;
Giger, Maryellen L. ;
Redmond, George ;
Farahani, Keyvan ;
Kirby, Justin S. ;
Clarke, Laurence P. .
JOURNAL OF MEDICAL IMAGING, 2016, 3 (04)
[6]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[7]  
Buty Mario, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9900, P662, DOI 10.1007/978-3-319-46720-7_77
[8]  
Carmo M. P. D., 1992, RIEMANNIAN GEOMETRY
[9]   Interpretable Spiculation Quantification for Lung Cancer Screening [J].
Choi, Wookjin ;
Nadeem, Saad ;
Riyahi, Sadegh ;
Deasy, Joseph O. ;
Tannenbaum, Allen ;
Lu, Wei .
SHAPE IN MEDICAL IMAGING, SHAPEMI 2018, 2018, 11167 :38-48
[10]   Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer [J].
Choi, Wookjin ;
Oh, Jung Hun ;
Riyahi, Sadegh ;
Liu, Chia-Ju ;
Jiang, Feng ;
Chen, Wengen ;
White, Charles ;
Rimner, Andreas ;
Mechalakos, James G. ;
Deasy, Joseph O. ;
Lu, Wei .
MEDICAL PHYSICS, 2018, 45 (04) :1537-1549