Extension of the ADI-BOR-FDTD Method to Debye Dispersive Media

被引:3
作者
Chen, Hai-Lin [1 ]
Chen, Bin [1 ]
Fang, Da-Gang [2 ]
Liu, Heng [1 ]
机构
[1] Nanjing Engn Inst, Electromagnet Lab, Nanjing 210007, Peoples R China
[2] Nanjing Univ Sci & Technol, Nanjing 210094, Peoples R China
基金
美国国家科学基金会;
关键词
Alternating direction implicit (ADI); body of revolution (BOR); dispersive media; finite-difference time-domain (FDTD); ALGORITHM; SCATTERING;
D O I
10.1109/LMWC.2009.2020004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The unconditionally stable alternating-direction-implicit (ADI)-FDTD method for bodies of revolution (BOR) is extended to Debye dispersive media based on the auxiliary differential equation (ADE) formulation. To validate the proposed algorithm, two numerical examples are given. Compared with the 3-D FDTD result, they show good agreement and at least 83% of memory and 55% of running time is saved for CFLN = 2.
引用
收藏
页码:344 / 346
页数:3
相关论文
共 16 条
[1]  
[Anonymous], 1995, Computational Electrodynamics: The Finite-Difference TimeDomain Method
[2]   Unconditionally stable ADI-BOR-FDTD algorithm for the analysis of rotationally symmetric geometries [J].
Chen, Hai-Lin ;
Chen, Bin ;
Yi, Yun ;
Fang, Da-Gang .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2007, 17 (04) :304-306
[3]   Anisotropic-medium PML for ADI-BOR-FDTD method [J].
Chen, Hai-lin ;
Chen, Bin .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2008, 18 (04) :221-223
[4]   Finite-difference time-domain algorithm for solving Maxwell's equations in rotationally symmetric geometries [J].
Chen, YC ;
Mittra, R ;
Harms, P .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1996, 44 (06) :832-839
[5]  
DAVIS AM, 1994, IEEE SOFTWARE, V11, P4
[6]   A FREQUENCY-DEPENDENT FINITE-DIFFERENCE TIME-DOMAIN FORMULATION FOR GENERAL DISPERSIVE MEDIA [J].
GANDHI, OP ;
GAO, BQ ;
CHEN, JY .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1993, 41 (04) :658-665
[7]   A TREATMENT BY THE FD-TD METHOD OF THE DISPERSIVE CHARACTERISTICS ASSOCIATED WITH ELECTRONIC POLARIZATION [J].
KASHIWA, T ;
FUKAI, I .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1990, 3 (06) :203-205
[8]   Piecewise linear recursive convolution for dispersive media using FDTD [J].
Kelley, DF ;
Luebbers, RJ .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1996, 44 (06) :792-797
[9]  
Kunz K.S., 1993, The Finite Difference Time Domain Method For Electromagnetics
[10]   FDTD CALCULATION OF SCATTERING FROM FREQUENCY-DEPENDENT MATERIALS [J].
LUEBBERS, R ;
STEICH, D ;
KUNZ, K .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1993, 41 (09) :1249-1257