USING MACHINE LEARNING TO PREDICT REALIZED VARIANCE

被引:0
|
作者
Carr, Peter [1 ]
Wu, Liuren [2 ]
Zhang, Zhibai [1 ]
机构
[1] NYU, Dept Finance & Risk Engn, Tandon Sch Engn, New York, NY 10003 USA
[2] CUNY, Baruch Coll, Zicklin Sch Business, New York, NY 10021 USA
来源
JOURNAL OF INVESTMENT MANAGEMENT | 2020年 / 18卷 / 02期
关键词
Volatility Prediction; Machine Learning; Neural Networks; Ridge Regression; Option Pricing; VOLATILITY; OPTIONS; BOND;
D O I
暂无
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Volatility index is a portfolio of options and represents market expectation of the underlying security's future realized volatility/variance. Traditionally the index weighting is based on a variance swap pricing formula. In this paper we propose a new method for building volatility index by formulating a variance prediction problem using machine learning. We test algorithms including Ridge regression, Feedforward Neural Networks and Random Forest on S&P 500 Index option data. By conducting a time series validation we show that the new weighting method can achieve higher predictability to future return variance and require fewer options. It is also shown that the weighting method combining the traditional and the machine learning approaches performs the best.
引用
收藏
页码:57 / 72
页数:16
相关论文
共 50 条
  • [1] Forecasting the realized variance of oil-price returns using machine learning: Is there a role for US state-level uncertainty?
    Cepni, Oguzhan
    Gupta, Rangan
    Pienaar, Daniel
    Pierdzioch, Christian
    ENERGY ECONOMICS, 2022, 114
  • [2] Using Machine Learning to Predict the Dissociation Energy of Organic Carbonyls
    Yu, Haishan
    Wang, Ying
    Wang, Xijun
    Zhang, Jinxiao
    Ye, Sheng
    Huang, Yan
    Luo, Yi
    Sharman, Edward
    Chen, Shilu
    Jiang, Jun
    JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (19): : 3844 - 3850
  • [3] Using machine learning to predict ovarian cancer
    Lu, Mingyang
    Fan, Zhenjiang
    Xu, Bin
    Chen, Lujun
    Zheng, Xiao
    Li, Jundong
    Znati, Taieb
    Mi, Qi
    Jiang, Jingting
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2020, 141
  • [4] Mindful Machine Learning Using Machine Learning Algorithms to Predict the Practice of Mindfulness
    Sauer, Sebastian
    Buettner, Ricardo
    Heidenreich, Thomas
    Lemke, Jana
    Berg, Christoph
    Kurz, Christoph
    EUROPEAN JOURNAL OF PSYCHOLOGICAL ASSESSMENT, 2018, 34 (01) : 6 - 13
  • [5] Using Machine Learning to Predict Enthalpy of Solvation
    Brandon J. Jaquis
    Ailin Li
    Nolan D. Monnier
    Robert G. Sisk
    William E. Acree
    Andrew S. I. D. Lang
    Journal of Solution Chemistry, 2019, 48 : 564 - 573
  • [6] Using Machine Learning to Predict Enthalpy of Solvation
    Jaquis, Brandon J.
    Li, Ailin
    Monnier, Nolan D.
    Sisk, Robert G.
    Acree, William E., Jr.
    Lang, Andrew S. I. D.
    JOURNAL OF SOLUTION CHEMISTRY, 2019, 48 (04) : 564 - 573
  • [7] Modeling Realized Variance with Realized Quarticity
    Kawakatsu, Hiroyuki
    STATS, 2022, 5 (03): : 856 - 880
  • [8] An Intelligent Approach Using Machine Learning Techniques to Predict Flow in People
    Pegalajar, M. C.
    Ruiz, L. G. B.
    Perez-Moreiras, E.
    Boada-Grau, J.
    Serrano-Fernandez, M. J.
    BIG DATA AND COGNITIVE COMPUTING, 2023, 7 (02)
  • [9] Do oil-price shocks predict the realized variance of US REITs?
    Bonato, Matteo
    Cepni, Oguzhan
    Gupta, Rangan
    Pierdzioch, Christian
    ENERGY ECONOMICS, 2021, 104
  • [10] AN EFFICIENT WAY TO PREDICT THE DISEASE USING MACHINE LEARNING
    Geetha, V
    Reddy, M. Karthik
    Srikanth, P.
    Gomathy, C. K.
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (05) : 992 - 1001