Variational analysis for the Black and Scholes equation with stochastic volatility

被引:19
作者
Achdou, Y
Tchou, N
机构
[1] Univ Paris 07, UFR Math, F-75252 Paris 5, France
[2] Univ Rennes 1, IRMAR, Rennes, France
[3] Univ Paris 06, Anal Numer Lab, F-75252 Paris, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2002年 / 36卷 / 03期
关键词
degenerate parabolic equations; european options; weighted Sobolev spaces; finite element and finite difference method;
D O I
10.1051/m2an:2002018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a variational analysis for a Black and Scholes equation with stochastic volatility. This equation gives the price of a European option as a function of the time, of the price of the underlying asset and of the volatility when the volatility is a function of a mean reverting Orstein-Uhlenbeck process, possibly correlated with the underlying asset. The variational analysis involves weighted Sobolev spaces. It enables to prove qualitative properties of the solution, namely a maximum principle and additional regularity properties. Finally, we make numerical simulations of the solution, by finite element and finite difference methods.
引用
收藏
页码:373 / 395
页数:23
相关论文
共 15 条
[1]  
ACHDOU Y, UNPUB
[2]  
Brezis H., 1999, Analyse fonctionnelle: Theorie et applications
[3]  
Cazenave T., 1998, OXFORD LECT SERIES M
[4]   NUMERICAL-METHODS FOR CONVECTION-DOMINATED DIFFUSION-PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE-ELEMENT OR FINITE-DIFFERENCE PROCEDURES [J].
DOUGLAS, J ;
RUSSELL, TF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (05) :871-885
[5]  
Fouque J.-P., 2000, Derivatives in Financial Markets with Stochastic Volatility
[6]  
Franchi B, 2000, MATH COMPUT, V69, P41, DOI 10.1090/S0025-5718-99-01075-3
[7]  
Franchi B, 1996, HOUSTON J MATH, V22, P859
[8]   The identity of weak and strong extensions of differential operators [J].
Friedrichs, K. O. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1944, 55 (1-3) :132-151
[9]  
Lions J.L., 1968, PROBLEMES LIMITES HO, V1
[10]  
Pazy A., 1983, APPL MATH SCI, V44