Multi-Agent Reinforcement Learning Based Resource Management in MEC- and UAV-Assisted Vehicular Networks

被引:370
作者
Peng, Haixia [1 ]
Shen, Xuemin [1 ]
机构
[1] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Servers; Task analysis; Resource management; Delays; Unmanned aerial vehicles; Quality of service; Wireless communication; Vehicular networks; multi-access edge computing; unmanned aerial vehicle; multi-dimensional resource management; multi-agent DDPG; ALLOCATION;
D O I
10.1109/JSAC.2020.3036962
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we investigate multi-dimensional resource management for unmanned aerial vehicles (UAVs) assisted vehicular networks. To efficiently provide on-demand resource access, the macro eNodeB and UAV, both mounted with multi-access edge computing (MEC) servers, cooperatively make association decisions and allocate proper amounts of resources to vehicles. Since there is no central controller, we formulate the resource allocation at the MEC servers as a distributive optimization problem to maximize the number of offloaded tasks while satisfying their heterogeneous quality-of-service (QoS) requirements, and then solve it with a multi-agent deep deterministic policy gradient (MADDPG)-based method. Through centrally training the MADDPG model offline, the MEC servers, acting as learning agents, then can rapidly make vehicle association and resource allocation decisions during the online execution stage. From our simulation results, the MADDPG-based method can converge within 200 training episodes, comparable to the single-agent DDPG (SADDPG)-based one. Moreover, the proposed MADDPG-based resource management scheme can achieve higher delay/QoS satisfaction ratios than the SADDPG-based and random schemes.
引用
收藏
页码:131 / 141
页数:11
相关论文
共 37 条
[1]  
[Anonymous], 2016, ADV NEURAL INFORM PR
[2]  
Bonsai, DEEP REINF LEARN MOD
[3]   When UAV Swarm Meets Edge-Cloud Computing: The QoS Perspective [J].
Chen, Wuhui ;
Liu, Baichuan ;
Huang, Huawei ;
Guo, Song ;
Meng, Zibin .
IEEE NETWORK, 2019, 33 (02) :36-43
[4]   Air-Ground Integrated Mobile Edge Networks: Architecture, Challenges, and Opportunities [J].
Cheng, Nan ;
Xu, Wenchao ;
Shi, Weisen ;
Zhou, Yi ;
Lu, Ning ;
Zhou, Haibo ;
Shen, Xuemin .
IEEE COMMUNICATIONS MAGAZINE, 2018, 56 (08) :26-32
[5]   Multi-Agent Reinforcement Learning-Based Resource Allocation for UAV Networks [J].
Cui, Jingjing ;
Liu, Yuanwei ;
Nallanathan, Arumugam .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (02) :729-743
[6]   Joint Resources and Workflow Scheduling in UAV-Enabled Wirelessly-Powered MEC for IoT Systems [J].
Du, Yao ;
Yang, Kun ;
Wang, Kezhi ;
Zhang, Guopeng ;
Zhao, Yizhe ;
Chen, Dongwei .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (10) :10187-10200
[7]   Design of a 5G Network Slice Extension With MEC UAVs Managed With Reinforcement Learning [J].
Faraci, Giuseppe ;
Grasso, Christian ;
Schembra, Giovanni .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (10) :2356-2371
[8]   Cache-Aided Non-Orthogonal Multiple Access for 5G-Enabled Vehicular Networks [J].
Gurugopinath, Sanjeev ;
Sofotasios, Paschalis C. ;
Al-Hammadi, Yousof ;
Muhaidat, Sami .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (09) :8359-8371
[9]   Joint Offloading and Trajectory Design for UAV-Enabled Mobile Edge Computing Systems [J].
Hu, Qiyu ;
Cai, Yunlong ;
Yu, Guanding ;
Qin, Zhijin ;
Zhao, Minjian ;
Li, Geoffrey Ye .
IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (02) :1879-1892
[10]   UAV-Assisted Relaying and Edge Computing: Scheduling and Trajectory Optimization [J].
Hu, Xiaoyan ;
Wong, Kai-Kit ;
Yang, Kun ;
Zheng, Zhongbin .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (10) :4738-4752