The explicit solution to the initial boundary value problem of Gierer-Meinhardt model

被引:3
作者
An, Xiaowei [1 ,2 ]
He, Zhen [1 ]
Song, Xianfa [3 ]
机构
[1] Tianjin Univ, Coll Management & Econ, Tianjin 300072, Peoples R China
[2] Chinese Peoples Armed Police Force Acad, Dept Basic Curriculum, Langfang 065000, Hebei, Peoples R China
[3] Tianjin Univ, Sch Math, Dept Math, Tianjin 300072, Peoples R China
关键词
Gierer-Meinhardt model; Initial-boundary value problem; Explicit solution; GLOBAL EXISTENCE; RING SOLUTIONS; SYSTEM; STABILITY;
D O I
10.1016/j.aml.2017.12.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the solutions of an elliptic system and an ODE system, under certain conditions, we get the explicit solution to the following initial boundary value problem of Gierer-Meinhardt model {u(t) = d(1)Delta u - a(1)u + u(p)/v(q) + delta(1)(x,t), x is an element of Omega, t > 0 v(t) = d(2)Delta v - a(2)u + u(r)/v(s) + delta(2)(x,t), x is an element of Omega, t > 0 partial derivative u/partial derivative eta = partial derivative v/partial derivative eta = 0 (or u = v = 0), x is an element of partial derivative Omega, t > 0 u(x,0) = u(0)(x), v(x,0) = v(0)(x), x is an element of Omega. Here p > 1, s > -1, d(1), d(2), q, r > 0 and a(1), a(2) >= 0 are constants, while delta(1)(x,t) and delta(2)(x, t) are nonnegative continuous functions. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:59 / 63
页数:5
相关论文
共 12 条
[1]   Global existence for a singular Gierer-Meinhardt system [J].
Chen, Shaohua ;
Salmaniw, Yurij ;
Xu, Runzhang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (03) :2940-2960
[2]   Large stable pulse solutions in reaction-diffusion equations [J].
Doelman, A ;
Gardner, RA ;
Kaper, TJ .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 (01) :443-507
[3]   An Explicit Theory for Pulses in Two Component, Singularly Perturbed, Reaction-Diffusion Equations [J].
Doelman, Arjen ;
Veerman, Frits .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2015, 27 (3-4) :555-595
[4]   STEADY-STATE SOLUTIONS FOR GIERER-MEINHARDT TYPE SYSTEMS WITH DIRICHLET BOUNDARY CONDITION [J].
Ghergu, Marius .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (08) :3953-3976
[5]   A singular Gierer-Meinhardt system with different source terms [J].
Ghergu, Marius ;
Radulescu, Vicentiu .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2008, 138 :1215-1234
[6]   Smoke-Ring Solutions of Gierer-Meinhardt System in R3 [J].
Kolokolnikov, Theodore ;
Ren, Xiaofeng .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2011, 10 (01) :251-277
[7]   Positive clustered layered solutions for the Gierer-Meinhardt system [J].
Kolokolonikov, T. ;
Wei, Juncheng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (04) :964-993
[8]   Global existence and finite time blow-up of solutions of a Gierer-Meinhardt system [J].
Li, Fang ;
Peng, Rui ;
Song, Xianfa .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (01) :559-589
[9]   Explicitly Solvable Nonlocal Eigenvalue Problems and the Stability of Localized Stripes in Reaction-Diffusion Systems [J].
Moyles, I. ;
Tse, W. H. ;
Ward, M. J. .
STUDIES IN APPLIED MATHEMATICS, 2016, 136 (01) :89-+
[10]   Existence, Stability, and Dynamics of Ring and Near-Ring Solutions to the Saturated Gierer-Meinhardt Model in the Semistrong Regime [J].
Moyles, Iain R. ;
Ward, Michael J. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2017, 16 (01) :597-639