Programmable ATP-Fueled DNA Coacervates by Transient Liquid-Liquid Phase Separation

被引:87
作者
Deng, Jie [1 ,3 ,4 ]
Walther, Andreas [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Freiburg, Inst Macromol Chem, Stefan Meier Str 31, D-79104 Freiburg, Germany
[2] DFG Cluster Excellence Living Adapt & Energy Auto, D-79110 Freiburg, Germany
[3] Univ Freiburg, Freiburg Mat Res Ctr, Stefan Meier Str 21, D-79104 Freiburg, Germany
[4] Univ Freiburg, Freiburg Ctr Interact Mat & Bioinspired Technol F, Georges Kohler Allee 105, D-79110 Freiburg, Germany
[5] Johannes Gutenberg Univ Mainz, A3BMS Lab, Dept Chem, Duesbergweg 10-14, D-55128 Mainz, Germany
基金
欧洲研究理事会;
关键词
NONEQUILIBRIUM STEADY-STATE; NUCLEAR; MICRODROPLETS; DROPLETS; BEHAVIOR; DRIVEN; STEP;
D O I
10.1016/j.chempr.2020.09.022
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Multivalency-driven liquid-liquid phase separation (LLPS) is essential for biomolecular condensates to facilitate spatiotemporal regulation of biological functions. Providing programmable model systems would help to better understand the LLPS processes in biology and furnish new types of compartmentalized synthetic reaction crucibles that exploit biological principles. Herein, we demonstrate a concept for programming LLPS using transient multivalency between ATP-driven sequence-defined functionalized nucleic acid polymers (SfNAPs), which serve as simple models for membraneless organelles. Critically, the prominent programmability of the DNA-based building blocks allows to encode distinct molecular recognitions for multiple multivalent systems, enabling sorted LLPS and, thus, multicomponent DNA coacervates. The ATP-driven coacervates are capable for multivalent trapping of micron-scale colloids and biomolecules to generate functions as emphasized for rate enhancements in enzymatic cascades. This work demonstrates ATP-driven multivalent coacervation as a valuable mechanism for dynamic multicomponent and functional biomolecular condensate mimics and for autonomous materials design in general.
引用
收藏
页码:3329 / 3343
页数:15
相关论文
共 63 条
[1]   Lower Critical Solution Temperature Behavior in Polyelectrolyte Complex Coacervates [J].
Adhikari, Sabin ;
Prabhu, Vivek M. ;
Muthukumar, Murugappan .
MACROMOLECULES, 2019, 52 (18) :6998-7004
[2]  
Aumiller WM, 2016, NAT CHEM, V8, P129, DOI [10.1038/NCHEM.2414, 10.1038/nchem.2414]
[3]   Biomolecular condensates: organizers of cellular biochemistry [J].
Banani, Salman F. ;
Lee, Hyun O. ;
Hyman, Anthony A. ;
Rosen, Michael K. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2017, 18 (05) :285-298
[4]   Protein Encapsulation via Polypeptide Complex Coacervation [J].
Black, Katie A. ;
Priftis, Dimitrios ;
Perry, Sarah L. ;
Yip, Jeremy ;
Byun, William Y. ;
Tirrell, Matthew .
ACS MACRO LETTERS, 2014, 3 (10) :1088-1091
[5]   Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes [J].
Brangwynne, Clifford P. ;
Mitchison, Timothy J. ;
Hyman, Anthony A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (11) :4334-4339
[6]   Germline P Granules Are Liquid Droplets That Localize by Controlled Dissolution/Condensation [J].
Brangwynne, Clifford P. ;
Eckmann, Christian R. ;
Courson, David S. ;
Rybarska, Agata ;
Hoege, Carsten ;
Gharakhani, Joebin ;
Juelicher, Frank ;
Hyman, Anthony A. .
SCIENCE, 2009, 324 (5935) :1729-1732
[7]   Stoichiometry controls activity of phase-separated clusters of actin signaling proteins [J].
Case, Lindsay B. ;
Zhang, Xu ;
Ditlev, Jonathon A. ;
Rosen, Michael K. .
SCIENCE, 2019, 363 (6431) :1093-+
[8]   Sequence and entropy-based control of complex coacervates [J].
Chang, Li-Wei ;
Lytle, Tyler K. ;
Radhakrishna, Mithun ;
Madinya, Jason J. ;
Velez, Jon ;
Sing, Charles E. ;
Perry, Sarah L. .
NATURE COMMUNICATIONS, 2017, 8
[9]   Pressure-Induced Dissolution and Reentrant Formation of Condensed, Liquid-Liquid Phase-Separated Elastomeric α-Elastin [J].
Cinar, Hasan ;
Cinar, Sueleyman ;
Chan, Hue Sun ;
Winter, Roland .
CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (33) :8286-8291
[10]   ATP-Responsive and ATP-Fueled Self-Assembling Systems and Materials [J].
Deng, Jie ;
Walther, Andreas .
ADVANCED MATERIALS, 2020, 32 (42)