New exact solutions of the conformable time-fractional Cahn-Allen and Cahn-Hilliard equations using the modified Kudryashov method

被引:116
作者
Hosseini, K. [1 ]
Bekir, A. [2 ]
Ansari, R. [3 ]
机构
[1] Islamic Azad Univ, Rasht Branch, Dept Math, Rasht, Iran
[2] Eskisehir Osmangazi Univ, Art Sci Fac, Dept Math & Comp, Eskisehir, Turkey
[3] Univ Guilan, Dept Mech Engn, Rasht, Iran
来源
OPTIK | 2017年 / 132卷
关键词
Cahn-Allen and Cahn-Hilliard equations; Conformable time-fractional derivative; Modified Kudryashov method; New explicit and exact solutions; FIBONACCI FUNCTION SOLUTIONS; BISWAS-MILOVIC EQUATION; SOLITARY WAVE SOLUTIONS; DIFFERENTIAL-EQUATIONS; EXP-FUNCTION; OPTICAL SOLITONS; SPATIOTEMPORAL DISPERSION; COEFFICIENTS;
D O I
10.1016/j.ijleo.2016.12.032
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Our concern in the present paper is to generate a few new explicit and exact solutions for the time-fractional Cahn-Allen and Cahn-Hilliard equations in the context of the conformable fractional derivative. A new version of Kudryashov method with the help of the Maple package is utilized to carry out this purpose. It is believed that the modified Kudryashov method is practically well suited; such that it can be adopted to a wide range of fractional differential equations (FDEs). (C) 2016 Elsevier GmbH. All rights reserved.
引用
收藏
页码:203 / 209
页数:7
相关论文
共 52 条
[1]   Fractional version of (1+1)-dimensional Biswas-Milovic equation and its solutions [J].
Ahmadian, Sabah ;
Darvishi, M. T. .
OPTIK, 2016, 127 (21) :10135-10147
[2]   Soliton solutions of (2+1)-dimensional time-fractional Zoomeron equation [J].
Aksoy, Esin ;
Cevikel, Adem C. ;
Bekir, Ahmet .
OPTIK, 2016, 127 (17) :6933-6942
[3]  
Alurrfi KAE., 2015, WORLD J MODEL SIMULA, V11, P308
[4]   Exact solutions for the fractional differential equations by using the first integral method [J].
Aminikhah, Hossein ;
Sheikhani, A. Refahi ;
Rezazadeh, Hadi .
Nonlinear Engineering, 2015, 4 (01) :15-22
[5]  
Aminikhah H., 2016, Sci Iran, V23, P1048, DOI DOI 10.24200/sci.2016.3873
[6]   Soliton solutions of nonlinear evolution equations in mathematical physics [J].
Arbabi, Somayeh ;
Najafi, Mohammad .
OPTIK, 2016, 127 (10) :4270-4274
[7]   Soliton solutions to resonant nonlinear schrodinger's equation with time-dependent coefficients by modified simple equation method [J].
Arnous, Ahmed H. ;
Mirzazadeh, Mohammad ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Biswas, Anjan ;
Belic, Milivoj .
OPTIK, 2016, 127 (23) :11450-11459
[8]   Improved (G′/G)-Expansion Method for the Time-Fractional Biological Population Model and Cahn-Hilliard Equation [J].
Baleanu, Dumitru ;
Ugurlu, Yavuz ;
Inc, Mustafa ;
Kilic, Bulent .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2015, 10 (05)
[9]   Exact solutions of nonlinear time fractional partial differential equations by sub-equation method [J].
Bekir, Ahmet ;
Aksoy, Esin ;
Cevikel, Adem C. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (13) :2779-2784
[10]  
Bekir A, 2015, ROM J PHYS, V60, P360