A small time solutions for the Korteweg-de Vries equation

被引:27
作者
Kutluay, S [1 ]
Bahadir, AR [1 ]
Özdes, A [1 ]
机构
[1] Inonu Univ, Fac Arts & Sci, Dept Math, TR-44100 Malatya, Turkey
关键词
Korteweg-de Vries equation; soliton; heat-balance integral;
D O I
10.1016/S0096-3003(98)10119-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a heat balance integral (HBI) method is applied to the one-dimensional non-linear Korteweg-deVries (KdV) equation prescribed by appropriate homogenous boundary conditions and a set of initial conditions to obtain its approximate analytical solutions at small times. It is shown that the HBI solutions obtained by the method may be used effectively at small times when the exact solution of the KdV equation is not known. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:203 / 210
页数:8
相关论文
共 21 条
[1]   GALERKIN METHODS APPLIED TO SOME MODEL EQUATIONS FOR NONLINEAR DISPERSIVE WAVES [J].
ALEXANDER, ME ;
MORRIS, JL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 30 (03) :428-451
[3]  
BELL GE, 1979, INT J HEAT MASS TRAN, V22, P1681, DOI 10.1016/0017-9310(79)90084-X
[4]  
Christie I, 1981, J COMPUT PHYS, V39, P94
[5]   NUMERICAL AND THEORETICAL-STUDY OF CERTAIN NON-LINEAR WAVE PHENOMENA [J].
FORNBERG, B ;
WHITHAM, GB .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 289 (1361) :373-404
[6]   KORTEWEG-DEVRIES EQUATION AND GENERALIZATIONS .6. METHODS FOR EXACT SOLUTION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (01) :97-133
[7]  
Gardner L.R.T., 1988, P INT C MOD SIM, V1, P81
[8]  
GODA K, 1975, PHYS SOC JAPAN, V39, P229
[9]  
Goodman TR., 1964, ADV HEAT TRANSFER, V1, P51, DOI [10.1016/S0065-2717(08)70097-2, DOI 10.1016/S0065-2717(08)70097-2]
[10]   HOPSCOTCH METHOD FOR KORTEWEG-DEVRIES EQUATION [J].
GREIG, IS ;
MORRIS, JL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 20 (01) :64-80