Wheat TaSP gene improves salt tolerance in transgenic Arabidopsis thaliana

被引:11
|
作者
Ma, Xiaoli [1 ]
Cui, Weina [1 ]
Liang, Wenji [1 ,2 ]
Huang, Zhanjing [1 ]
机构
[1] Hebei Normal Univ, Coll Life Sci, Shijiazhuang 050024, Peoples R China
[2] North China Univ Sci & Technol, Coll Clin Med, Tangshan 063000, Peoples R China
关键词
Wheat; Salt tolerance; qPCR; GUS dyeing; NMT; PLANT-RESPONSES; LIPID-PEROXIDATION; K+ NUTRITION; STRESS; SALINITY; ACID; NACL; TRANSFORMATION; TRANSPORT; HOMOLOG;
D O I
10.1016/j.plaphy.2015.10.010
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
A novel salt-induced gene with unknown functions was cloned through analysis of gene expression profile of a salt-tolerant wheat mutant RH8706-49 under salt stress. The gene was named Triticum aestivum salt-related protein (TaSP) and deposited in GenBank (Accession No. KF307326). Quantitative polymerase chain reaction (qPCR) results showed that TaSP expression was induced under salt, abscisic acid (ABA), and polyethylene glycol (PEG) stresses. Subcellular localization revealed that TaSP was mainly localized in cell membrane. Overexpression of TaSP in Arabidopsis could improve salt tolerance of 35S::TaSP transgenic Arabidopsis. 35S::TaSP transgenic Arabidopsis lines after salt stress presented better physiological indexes than the control group. In the non-invasive micro-test (NMT), an evident Na+ excretion was observed at the root tip of salt-stressed 35S::TaSP transgenic Arabidopsis. TaSP promoter was cloned, and its beta-glucuronidase (GUS) activities before and after ABA, salt, cold, heat, and salicylic acid (SA) stresses were determined. Full-length TaSP promoter contained ABA and salt response elements. (C) 2015 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:187 / 195
页数:9
相关论文
共 50 条
  • [11] The grape VvMBF1 gene improves drought stress tolerance in transgenic Arabidopsis thaliana
    Yan, Qin
    Hou, Hongmin
    Singer, Stacy D.
    Yan, Xiaoxiao
    Guo, Rongrong
    Wang, Xiping
    PLANT CELL TISSUE AND ORGAN CULTURE, 2014, 118 (03) : 571 - 582
  • [12] The grape VvMBF1 gene improves drought stress tolerance in transgenic Arabidopsis thaliana
    Qin Yan
    Hongmin Hou
    Stacy D. Singer
    Xiaoxiao Yan
    Rongrong Guo
    Xiping Wang
    Plant Cell, Tissue and Organ Culture (PCTOC), 2014, 118 : 571 - 582
  • [13] Function of the wheat TaSIP gene in enhancing drought and salt tolerance in transgenic Arabidopsis and rice
    Hao-Yue Du
    Yin-Zhu Shen
    Zhan-Jing Huang
    Plant Molecular Biology, 2013, 81 : 417 - 429
  • [14] Function of the wheat TaSIP gene in enhancing drought and salt tolerance in transgenic Arabidopsis and rice
    Du, Hao-Yue
    Shen, Yin-Zhu
    Huang, Zhan-Jing
    PLANT MOLECULAR BIOLOGY, 2013, 81 (4-5) : 417 - 429
  • [15] Mechanisms of Salt Tolerance in Transgenic Arabidopsis thaliana Carrying a Peroxisomal Ascorbate Peroxidase Gene from Barley
    A. UEDA
    T. TAKABE
    Pedosphere, 2008, (04) : 486 - 495
  • [16] Tolerance of transgenic Arabidopsis thaliana overexpressing apple MdAGO4.1 gene to drought and salt stress
    Liu, Mingxiao
    Li, Xiaohan
    Yin, Baoying
    Sun, Ye
    Liang, Bowen
    Li, Zhongyong
    Zhang, Xueying
    Xu, Jizhong
    Zhou, Shasha
    JOURNAL OF APPLIED BOTANY AND FOOD QUALITY, 2023, 96 : 11 - 19
  • [17] Transcription factor OsAP21 gene increases salt/drought tolerance in transgenic Arabidopsis thaliana
    Jin, Xiaofeng
    Xue, Yong
    Wang, Ren
    Xu, RanRan
    Bian, Lin
    Zhu, Bo
    Han, Hongjuan
    Peng, Rihe
    Yao, Quanhong
    MOLECULAR BIOLOGY REPORTS, 2013, 40 (02) : 1743 - 1752
  • [18] Overexpressing of a novel wheat prolyl aminopeptidase gene enhances zinc stress tolerance in transgenic Arabidopsis thaliana
    Wang, Yuange
    Liu, Huaihua
    Wang, Shuping
    Li, Hongjie
    Xin, Qingguo
    PLANT CELL TISSUE AND ORGAN CULTURE, 2015, 121 (02) : 489 - 499
  • [19] Mechanisms of salt tolerance in transgenic Arabidopsis thaliana carrying a peroxisomal ascorbate peroxidase gene from barley
    Xu Wei-Feng
    Shi Wei-Ming
    Ueda, A.
    Takabe, T.
    PEDOSPHERE, 2008, 18 (04) : 486 - 495
  • [20] Overexpressing of a novel wheat prolyl aminopeptidase gene enhances zinc stress tolerance in transgenic Arabidopsis thaliana
    Yuange Wang
    Huaihua Liu
    Shuping Wang
    Hongjie Li
    Qingguo Xin
    Plant Cell, Tissue and Organ Culture (PCTOC), 2015, 121 : 489 - 499