On solutions of the Ricci curvature equation and the Einstein equation

被引:34
作者
Pina, Romildo [1 ]
Tenenblat, Keti [2 ]
机构
[1] Univ Fed Goias, IME, BR-74001970 Goiania, Go, Brazil
[2] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
CONFORMAL METRICS; TENSORS; EXISTENCE;
D O I
10.1007/s11856-009-0040-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the pseudo-Euclidean space (R (n) , g), with n a parts per thousand yen 3 and g (ij) = delta (ij) epsilon (i) , epsilon (i) = +/- 1, where at least one epsilon (i) = 1 and nondiagonal tensors of the form T = I pound (ij) f (ij) dx (i) dx (j) such that, for i not equal j, f (ij) (x (i) , x (j) ) depends on x (i) and x (j) . We provide necessary and sufficient conditions for such a tensor to admit a metric a, conformal to g, that solves the Ricci tensor equation or the Einstein equation. Similar problems are considered for locally conformally flat manifolds. Examples are provided of complete metrics on R (n) , on the n-dimensional torus T (n) and on cylinders T (k) xR (n-k) , that solve the Ricci equation or the Einstein equation.
引用
收藏
页码:61 / 76
页数:16
相关论文
共 15 条
[1]   THE RICCI CURVATURE EQUATION WITH ROTATIONAL SYMMETRY [J].
CAO, JG ;
DETURCK, D .
AMERICAN JOURNAL OF MATHEMATICS, 1994, 116 (02) :219-241
[2]   Metrics with prescribed Ricci curvature of constant rank I. The integrable case [J].
DeTurck, D ;
Goldschmidt, H .
ADVANCES IN MATHEMATICS, 1999, 145 (01) :1-97
[3]  
DETURCK D, 1982, ANN MATH STUD, V102, P525
[4]   EXISTENCE OF METRICS WITH PRESCRIBED RICCI CURVATURE - LOCAL THEORY [J].
DETURCK, DM .
INVENTIONES MATHEMATICAE, 1981, 65 (01) :179-207
[5]  
DETURCK DM, 1983, COMPOS MATH, V48, P327
[6]  
DETURCK DM, 1984, ANN I H POINCARE-AN, V1, P351
[7]  
HAMILTON RS, 1984, MATH SCI RES I PUBLI, P47
[8]   METRICS OF NEGATIVE RICCI CURVATURE [J].
LOHKAMP, J .
ANNALS OF MATHEMATICS, 1994, 140 (03) :655-683
[9]   On the Ricci and Einstein equations on the pseudo-euclidean and hyperbolic spaces [J].
Pina, R ;
Tenenblat, K .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2006, 24 (02) :101-107
[10]   Conformal metrics and Ricci tensors on the sphere [J].
Pina, R ;
Tenenblat, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (12) :3715-3724