Oxidative Stress Activates SIRT2 to Deacetylate and Stimulate Phosphoglycerate Mutase

被引:130
作者
Xu, Yanping [3 ,4 ]
Li, Fulong [3 ,4 ]
Lv, Lei [1 ,2 ,3 ]
Li, Tingting [3 ,4 ]
Zhou, Xin [3 ,4 ]
Deng, Chu-Xia [5 ]
Guan, Kun-Liang [1 ,2 ,3 ,6 ,7 ]
Lei, Qun-Ying [1 ,2 ,3 ]
Xiong, Yue [1 ,2 ,3 ,8 ]
机构
[1] Fudan Univ, Shanghai Med Coll, Minist Educ, Key Lab Mol Med, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Med Coll, Dept Biochem & Mol Biol, Shanghai 200433, Peoples R China
[3] Fudan Univ, Inst Biomed Sci, Mol & Cell Biol Lab, Shanghai 200433, Peoples R China
[4] Fudan Univ, Sch Life Sci, Shanghai 200433, Peoples R China
[5] Natl Inst Diabet Digest & Kidney Dis, Genet Dev & Dis Branch, NIH, Bethesda, MD USA
[6] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92093 USA
[7] Univ Calif San Diego, Moores Canc Ctr, La Jolla, CA 92093 USA
[8] Univ N Carolina, Lineberger Comprehens Canc Ctr, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA
关键词
LYSINE ACETYLATION; METABOLIC ENZYMES; CRYSTAL-STRUCTURE; ENOLASE ACTIVITY; PHOSPHATASE; INHIBITION; GLYCOLYSIS; ISOENZYMES; CELLS;
D O I
10.1158/0008-5472.CAN-13-3615
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Glycolytic enzyme phosphoglycerate mutase (PGAM) plays an important role in coordinating energy production with generation of reducing power and the biosynthesis of nucleotide precursors and amino acids. Inhibition of PGAM by small RNAi or small molecule attenuates cell proliferation and tumor growth. PGAM activity is commonly upregulated in tumor cells, but how PGAM activity is regulated in vivo remains poorly understood. Here we report that PGAM is acetylated at lysine 100 (K100), an active site residue that is invariably conserved from bacteria, to yeast, plant, and mammals. K100 acetylation is detected in fly, mouse, and human cells and in multiple tissues and decreases PGAM2 activity. The cytosolic protein deacetylase sirtuin 2 (SIRT2) deacetylates and activates PGAM2. Increased levels of reactive oxygen species stimulate PGAM2 deacetylation and activity by promoting its interaction with SIRT2. Substitution of endogenous PGAM2 with an acetylation mimetic mutant K100Q reduces cellular NADPH production and inhibits cell proliferation and tumor growth. These results reveal a mechanism of PGAM2 regulation and NADPH homeostasis in response to oxidative stress that impacts cell proliferation and tumor growth. (C)2014 AACR.
引用
收藏
页码:3630 / 3642
页数:13
相关论文
共 27 条
[1]   Mechanism of sirtuin inhibition by nicotinamide:: Altering the NAD+ cosubstrate specificity of a Sir2 enzyme [J].
Avalos, JL ;
Bever, KM ;
Wolberger, C .
MOLECULAR CELL, 2005, 17 (06) :855-868
[2]   STRUCTURE OF YEAST PHOSPHOGLYCERATE MUTASE [J].
CAMPBELL, JW ;
WATSON, HC ;
HODGSON, GI .
NATURE, 1974, 250 (5464) :301-303
[3]   Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions [J].
Choudhary, Chunaram ;
Kumar, Chanchal ;
Gnad, Florian ;
Nielsen, Michael L. ;
Rehman, Michael ;
Walther, Tobias C. ;
Olsen, Jesper V. ;
Mann, Matthias .
SCIENCE, 2009, 325 (5942) :834-840
[4]   An ensemble of structures of Burkholderia pseudomallei 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase [J].
Davies, Douglas R. ;
Staker, Bart L. ;
Abendroth, Jan A. ;
Edwards, Thomas E. ;
Hartley, Robert ;
Leonard, Jess ;
Kim, Hidong ;
Rychel, Amanda L. ;
Hewitt, Stephen N. ;
Myler, Peter J. ;
Stewart, Lance J. .
ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2011, 67 :1044-1050
[5]   Phosphoglycerate mutase, 2,3-bisphosphoglycerate phosphatase and enolase activity and isoenzymes in lung, colon and liver carcinomas [J].
Durany, N ;
Joseph, J ;
Campo, E ;
Molina, R ;
Carreras, J .
BRITISH JOURNAL OF CANCER, 1997, 75 (07) :969-977
[6]  
Durany N, 2000, BRIT J CANCER, V82, P20
[7]   Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres [J].
Ekwall, K ;
Olsson, T ;
Turner, BM ;
Cranston, G ;
Allshire, RC .
CELL, 1997, 91 (07) :1021-1032
[8]  
Fothergill-Gilmore LA, 1989, ADV ENZYMOL RAMB, V62, P227
[9]   HIF-dependent antitumorigenic effect of antioxidants in vivo [J].
Gao, Ping ;
Zhang, Huafeng ;
Dinavahi, Ramani ;
Li, Feng ;
Xiang, Yan ;
Raman, Venu ;
Bhujwalla, Zaver M. ;
Felsher, Dean W. ;
Cheng, Linzhao ;
Pevsner, Jonathan ;
Lee, Linda A. ;
Semenza, Gregg L. ;
Dang, Chi V. .
CANCER CELL, 2007, 12 (03) :230-238
[10]   Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation [J].
Heiden, Matthew G. Vander ;
Cantley, Lewis C. ;
Thompson, Craig B. .
SCIENCE, 2009, 324 (5930) :1029-1033