14.1% CsPbI3 Perovskite Quantum Dot Solar Cells via Cesium Cation Passivation

被引:278
作者
Ling, Xufeng [1 ]
Zhou, Sijie [1 ]
Yuan, Jianyu [1 ]
Shi, Junwei [1 ]
Qian, Yuli [1 ]
Larson, Bryon W. [2 ]
Zhao, Qian [2 ]
Qin, Chaochao [3 ]
Li, Fangchao [1 ]
Shi, Guozheng [1 ]
Stewart, Connor [4 ]
Hu, Jiaxin [1 ]
Zhang, Xuliang [1 ]
Luther, Joseph M. [2 ]
Duhm, Steffen [1 ]
Ma, Wanli [1 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Joint Int Res Lab Carbon Based Funct Mat & Device, 199 Ren Ai Rd,Suzhou Ind Pk, Suzhou 215123, Jiangsu, Peoples R China
[2] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA
[3] Henan Normal Univ, Coll Phys & Mat Sci, Xinxiang 453007, Henan, Peoples R China
[4] Univ Western Ontario, Dept Chem, London, ON N6A 5B7, Canada
基金
中国国家自然科学基金;
关键词
cesium acetate; CsPbI3; perovskite quantum dots; solar cells; surface passivation; ELECTRON EXTRACTION LAYER; ALPHA-CSPBI3; PEROVSKITE; HALIDE PEROVSKITES; LEAD IODIDE; EFFICIENT; PHOTOVOLTAICS; NANOCRYSTALS; ENERGY; PBS; NANOPARTICLES;
D O I
10.1002/aenm.201900721
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface manipulation of quantum dots (QDs) has been extensively reported to be crucial to their performance when applied into optoelectronic devices, especially for photovoltaic devices. In this work, an efficient surface passivation method for emerging CsPbI3 perovskite QDs using a variety of inorganic cesium salts (cesium acetate (CsAc), cesium idodide (CsI), cesium carbonate (Cs2CO3), and cesium nitrate (CsNO3)) is reported. The Cs-salts post-treatment can not only fill the vacancy at the CsPbI3 perovskite surface but also improve electron coupling between CsPbI3 QDs. As a result, the free carrier lifetime, diffusion length, and mobility of QD film are simultaneously improved, which are beneficial for fabricating high-quality conductive QD films for efficient solar cell devices. After optimizing the post-treatment process, the short-circuit current density and fill factor are significantly enhanced, delivering an impressive efficiency of 14.10% for CsPbI3 QD solar cells. In addition, the Cs-salt-treated CsPbI3 QD devices exhibit improved stability against moisture due to the improved surface environment of these QDs. These findings will provide insight into the design of high-performance and low-trap-states perovskite QD films with desirable optoelectronic properties.
引用
收藏
页数:9
相关论文
共 59 条
  • [1] Strongly emissive perovskite nanocrystal inks for high-voltage solar cells
    Akkerman, Quinten A.
    Gandini, Marina
    Di Stasio, Francesco
    Rastogi, Prachi
    Palazon, Francisco
    Bertoni, Giovanni
    Ball, James M.
    Prato, Mirko
    Petrozza, Annamaria
    Manna, Liberato
    [J]. NATURE ENERGY, 2017, 2 (02):
  • [2] Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation
    Azpiroz, Jon M.
    Mosconi, Edoardo
    Bisquert, Juan
    De Angelis, Filippo
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (07) : 2118 - 2127
  • [3] Temperature-assisted crystallization for inorganic CsPbI2Br perovskite solar cells to attain high stabilized efficiency 14.81%
    Bai, Dongliang
    Bian, Hui
    Jin, Zhiwen
    Wang, Haoran
    Meng, Lina
    Wang, Qian
    Liu, Shengzhong
    [J]. NANO ENERGY, 2018, 52 : 408 - 415
  • [4] Interstitial Mn2+-Driven High-Aspect-Ratio Grain Growth for Low-Trap-Density Microcrystalline Films for Record Efficiency CsPbl2Br Solar Cells
    Bai, Dongliang
    Zhang, Jingru
    Jin, Zhiwen
    Bian, Hui
    Wang, Kang
    Wang, Haoran
    Liang, Lei
    Wang, Qian
    Liu, Shengzhong Frank
    [J]. ACS ENERGY LETTERS, 2018, 3 (04): : 970 - +
  • [5] Bi DQ, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.142, 10.1038/nenergy.2016.142]
  • [6] Graded Bandgap CsPbI2+xBr1-x Perovskite Solar Cells with a Stabilized Efficiency of 14.4%
    Bian, Hui
    Bai, Dongliang
    Jin, Zhiwen
    Wang, Kang
    Liang, Lei
    Wang, Haoran
    Zhang, Jingru
    Wang, Qian
    Liu, Shengzhong
    [J]. JOULE, 2018, 2 (08) : 1500 - 1510
  • [7] The role of surface passivation for efficient and photostable PbS quantum dot solar cells
    Cao, Yiming
    Stavrinadis, Alexandros
    Lasanta, Tania
    So, David
    Konstantatos, Gerasimos
    [J]. NATURE ENERGY, 2016, 1
  • [8] Broadband Enhancement of PbS Quantum Dot Solar Cells by the Synergistic Effect of Plasmonic Gold Nanobipyramids and Nanospheres
    Chen, Si
    Wang, Yongjie
    Liu, Qipeng
    Shi, Guozheng
    Liu, Zeke
    Lu, Kunyuan
    Han, Lu
    Ling, Xufeng
    Zhang, Han
    Cheng, Si
    Ma, Wanli
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (08)
  • [9] Chuang CHM, 2014, NAT MATER, V13, P796, DOI [10.1038/nmat3984, 10.1038/NMAT3984]
  • [10] Tandem Solar Cells from Solution-Processed CdTe and PbS Quantum Dots Using a ZnTe-ZnO Tunnel Junction
    Crisp, Ryan W.
    Pach, Gregory F.
    Kurley, J. Matthew
    France, Ryan M.
    Reese, Matthew O.
    Nanayakkara, Sanjini U.
    MacLeod, Bradley A.
    Talapin, Dmitri V.
    Beard, Matthew C.
    Luther, Joseph M.
    [J]. NANO LETTERS, 2017, 17 (02) : 1020 - 1027