Material versatility using replica molding for large-scale fabrication of high aspect-ratio, high density arrays of nano-pillars

被引:11
作者
Li, Y. [1 ]
Ng, H. W. [2 ,3 ]
Gates, B. D. [2 ,3 ]
Menon, C. [1 ]
机构
[1] Simon Fraser Univ, Sch Engn Sci, MENRVA Res Grp, Burnaby, BC V5A 1S6, Canada
[2] Simon Fraser Univ, Dept Chem, Burnaby, BC V5A 1S6, Canada
[3] Simon Fraser Univ, LABS 4D, Burnaby, BC V5A 1S6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
replica molding; hot embossing; nano-pillar arrays; silanization; high aspect-ratio; ANODIC ALUMINUM-OXIDE; NANOPILLAR ARRAYS; LITHOGRAPHY; ADHESIVE; DRY; STABILITY; LIMITS;
D O I
10.1088/0957-4484/25/28/285303
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Arrays of high aspect-ratio (AR) nano-pillars have attracted a lot of interest for various applications, such as for use in solar cells, surface acoustic sensors, tissue engineering, bio-inspired adhesives and anti-reflective surfaces. Each application may require a different structural material, which can vary in the required chemical composition and mechanical properties. In this paper, a low cost fabrication procedure is proposed for large scale, high AR and high density arrays of nano-pillars. The proposed method enables the replication of a master with high fidelity, using the subsequent replica molds multiple times, and preparing arrays of nano-pillars in a variety of different materials. As an example applied to bio-inspired dry adhesion, polymeric arrays of nano-pillars are prepared in this work. Thermoset and thermoplastic nano-pillar arrays are examined using an atomic force microscope to assess their adhesion strength and its uniformity. Results indicate the proposed method is robust and can be used to reliably prepare nano-structures with a high AR.
引用
收藏
页数:10
相关论文
共 50 条
[1]  
[Anonymous], IEEE INT C ROB BIOM
[2]  
[Anonymous], CRIT SURF TENS CONT
[3]   An assessment of the process capabilities of nanoimprint lithography [J].
Balla, Tobias ;
Spearing, S. Mark ;
Monk, Andrew .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (17)
[4]  
Banerjee P, 2009, NAT NANOTECHNOL, V4, P292, DOI [10.1038/nnano.2009.37, 10.1038/NNANO.2009.37]
[5]   Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes [J].
Belwalkar, A. ;
Grasing, E. ;
Van Geertruyden, W. ;
Huang, Z. ;
Misiolek, W. Z. .
JOURNAL OF MEMBRANE SCIENCE, 2008, 319 (1-2) :192-198
[6]   Replica molding of high-aspect-ratio (sub-)micron hydrogel pillar arrays and their stability in air and solvents [J].
Chandra, Dinesh ;
Taylor, J. Ashley ;
Yang, Shu .
SOFT MATTER, 2008, 4 (05) :979-984
[7]   Novel fabrication of an Au nanocone array on polycarbonate for high performance surface-enhanced Raman scattering [J].
Chang, Wei-Yi ;
Lin, Kai-Heng ;
Wu, Jing-Tang ;
Yang, Sen-Yeu ;
Lee, Kuang-Li ;
Wei, Pei-Kuen .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2011, 21 (03)
[8]   The fabrication of silicon nanostructures by local gallium implantation and cryogenic deep reactive ion etching [J].
Chekurov, N. ;
Grigoras, K. ;
Peltonen, A. ;
Franssila, S. ;
Tittonen, I. .
NANOTECHNOLOGY, 2009, 20 (06)
[9]   Integration of large-area polymer nanopillar arrays into microfluidic devices using in situ polymerization cast molding [J].
Chen, Guofang ;
McCandless, Gregory T. ;
McCarley, Robin L. ;
Soper, Steven A. .
LAB ON A CHIP, 2007, 7 (11) :1424-1427
[10]   Functional template-derived poly(methyl methacrylate) nanopillars for solid-phase biological reactions [J].
Chen, Guofang ;
McCarley, Robin L. ;
Soper, Steven A. ;
Situma, Catherine ;
Bolivar, Jowell G. .
CHEMISTRY OF MATERIALS, 2007, 19 (16) :3855-3857