Regulation of Skeletal Muscle Atrophy in Cachexia by MicroRNAs and Long Non-coding RNAs

被引:25
作者
Chen, Rui [1 ]
Lei, Si [1 ]
Jiang, Ting [2 ]
She, Yanling [1 ]
Shi, Huacai [1 ]
机构
[1] Guangdong Second Prov Gen Hosp, Guangdong Tradit Med & Sports Injury Rehabil Res, Guangzhou, Peoples R China
[2] Sun Yat Sen Univ, Dept Radiol, Affiliated Hosp 3, Guangzhou, Peoples R China
关键词
skeletal muscle; atrophy; cachexia; miRNAs; lncRNAs; CELL-PROLIFERATION; MITOCHONDRIAL DYSFUNCTION; GENE-EXPRESSION; RENAL FIBROSIS; POOR-PROGNOSIS; CANCER; MEG3; DIFFERENTIATION; ACTIVATION; RESISTANCE;
D O I
10.3389/fcell.2020.577010
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Skeletal muscle atrophy is a common complication of cachexia, characterized by progressive bodyweight loss and decreased muscle strength, and it significantly increases the risks of morbidity and mortality in the population with atrophy. Numerous complications associated with decreased muscle function can activate catabolism, reduce anabolism, and impair muscle regeneration, leading to muscle wasting. microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), types of non-coding RNAs, are important for regulation of skeletal muscle development. Few studies have specifically identified the roles of miRNAs and lncRNAs in cellular or animal models of muscular atrophy during cachexia, and the pathogenesis of skeletal muscle wasting in cachexia is not entirely understood. To develop potential approaches to improve skeletal muscle mass, strength, and function, a more comprehensive understanding of the known key pathophysiological processes leading to muscular atrophy is needed. In this review, we summarize the known miRNAs, lncRNAs, and corresponding signaling pathways involved in regulating skeletal muscle atrophy in cachexia and other diseases. A comprehensive understanding of the functions and mechanisms of miRNAs and lncRNAs during skeletal muscle wasting in cachexia and other diseases will, therefore, promote therapeutic treatments for muscle atrophy.
引用
收藏
页数:13
相关论文
共 112 条
[1]   Targeting noncoding RNAs in disease [J].
Adams, Brian D. ;
Parsons, Christine ;
Walker, Lisa ;
Zhang, Wen Cai ;
Slack, Frank J. .
JOURNAL OF CLINICAL INVESTIGATION, 2017, 127 (03) :761-771
[2]   Skeletal muscle PGC-1α1 reroutes kynurenine metabolism to increase energy efficiency and fatigue-resistance [J].
Agudelo, Leandro Z. ;
Ferreira, Duarte M. S. ;
Dadyar, Shamim ;
Cervenka, Igor ;
Ketscher, Lars ;
Izadi, Manizheh ;
Liu Zhengye ;
Furrer, Regula ;
Handschin, Christoph ;
Venckunas, Tomas ;
Brazaitis, Marius ;
Kamandulis, Sigitas ;
Lanner, Johanna T. ;
Ruas, Jorge L. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[3]   Single cell analysis reveals the involvement of the long non-coding RNA Pvt1 in the modulation of muscle atrophy and mitochondrial network [J].
Alessio, Enrico ;
Buson, Lisa ;
Chemello, Francesco ;
Peggion, Caterina ;
Grespi, Francesca ;
Martini, Paolo ;
Massimino, Maria L. ;
Pacchioni, Beniamina ;
Millino, Caterina ;
Romualdi, Chiara ;
Bertoli, Alessandro ;
Scorrano, Luca ;
Lanfranchi, Gerolamo ;
Cagnin, Stefano .
NUCLEIC ACIDS RESEARCH, 2019, 47 (04) :1653-1670
[4]   MicroRNA-486 dependent modulation of DOCK3/PTEN/AKT signaling pathways improves muscular dystrophy-associated symptoms [J].
Alexander, Matthew S. ;
Carlos Casar, Juan ;
Motohashi, Norio ;
Vieira, Natassia M. ;
Eisenberg, Iris ;
Marshall, Jamie L. ;
Gasperini, Molly J. ;
Lek, Angela ;
Myers, Jennifer A. ;
Estrella, Elicia A. ;
Kang, Peter B. ;
Shapiro, Frederic ;
Rahimov, Fedik ;
Kawahara, Genri ;
Widrick, Jeffrey J. ;
Kunkel, Louis M. .
JOURNAL OF CLINICAL INVESTIGATION, 2014, 124 (06) :2651-2667
[5]   NURR1 activation in skeletal muscle controls systemic energy homeostasis [J].
Amoasii, Leonela ;
Sanchez-Ortiz, Efrain ;
Fujikawa, Teppei ;
Elmquist, Joel K. ;
Bassel-Duby, Rhonda ;
Olson, Eric N. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (23) :11299-11308
[6]   Wasting as independent risk factor for mortality in chronic heart failure [J].
Anker, SD ;
Ponikowski, P ;
Varney, S ;
Chua, TP ;
Clark, AL ;
WebbPeploe, KM ;
Harrington, D ;
Kox, WJ ;
PooleWilson, PA ;
Coats, AJS .
LANCET, 1997, 349 (9058) :1050-1053
[7]   Deficiency in the nuclear long noncoding RNA Charme causes myogenic defects and heart remodeling in mice [J].
Ballarino, Monica ;
Cipriano, Andrea ;
Tita, Rossella ;
Santini, Tiziana ;
Desideri, Fabio ;
Morlando, Mariangela ;
Colantoni, Alessio ;
Carrieri, Claudia ;
Nicoletti, Carmine ;
Musaro, Antonio ;
O'Carroll, Donal ;
Bozzoni, Irene .
EMBO JOURNAL, 2018, 37 (18)
[8]   Cancer-associated cachexia [J].
Baracos, Vickie E. ;
Martin, Lisa ;
Korc, Murray ;
Guttridge, Denis C. ;
Fearon, Kenneth C. H. .
NATURE REVIEWS DISEASE PRIMERS, 2018, 4
[9]   MicroRNAs in muscle wasting and cachexia induced by heart failure [J].
Bei, Yihua ;
Xiao, Junjie .
NATURE REVIEWS CARDIOLOGY, 2017, 14 (09) :566-566
[10]   MiR-375 is Essential for Human Spinal Motor Neuron Development and May Be Involved in Motor Neuron Degeneration [J].
Bhinge, Akshay ;
Namboori, Seema C. ;
Bithell, Angela ;
Soldati, Chiara ;
Buckley, Noel J. ;
Stanton, Lawrence W. .
STEM CELLS, 2016, 34 (01) :124-134