Simple true random number generator for any semi-conductor technology

被引:7
|
作者
Boehl, Eberhard
机构
关键词
random number generation; field programmable gate arrays; logic gates; semiconductor technology; true random number generators; TRNG; ring oscillators; XOR compression; FPGA implementations; digital library elements; digital design flow; sampling frequency; compression coefficient;
D O I
10.1049/iet-cdt.2014.0029
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
True random number generators (TRNGs) are needed in cryptography for key generation, in challenge response authentication procedures and for countermeasures against power analysis attacks. Such true randomness requires to utilise random physical hardware effects. It is the goal to make the TRNG usable for different semi-conductor technologies (including field programmable gate arrays (FPGAs)). This approach is based on ring oscillators with multiple taps in combination with a simple post processing by exclusive OR antivalence (XOR) compression. Verifications with a test chip and several FPGA implementations showed that standard digital library elements and the digital design flow can be used without any constraints for compilation and special layout rules. A proper choice of sampling frequency and compression coefficient ensures a random output with extremely low bias for different technologies which can be checked on-line easily. It was shown that for passing the on-line test with a given bias limit the generated random data passes the statistical tests.
引用
收藏
页码:239 / 245
页数:7
相关论文
共 50 条
  • [1] True random number generator resistant to frequency injection attacks
    Wieczorek, P. Z.
    ELECTRONICS LETTERS, 2015, 51 (05) : 385 - 386
  • [2] FPGA VENDOR AGNOSTIC TRUE RANDOM NUMBER GENERATOR
    Schellekens, Dries
    Preneel, Bart
    Verbauwhede, Ingrid
    2006 INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS, PROCEEDINGS, 2006, : 139 - 144
  • [3] True Random Number Generator based on RO-PUF
    Rojas-Munoz, Luis F.
    Sanchez-Solano, Santiago
    Martinez-Rodriguez, Macarena C.
    Brox, Piedad
    PROCEEDINGS OF THE 37TH CONFERENCE ON DESIGN OF CIRCUITS AND INTEGRATED SYSTEMS (DCIS 2022), 2022, : 36 - 41
  • [4] Can Deep Learning Break a True Random Number Generator?
    Yu, Yang
    Moraitis, Michail
    Dubrova, Elena
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (05) : 1710 - 1714
  • [5] A simple PLL-based true random number generator for embedded digital systems
    Drutarovsky, M
    Simka, M
    Fischer, V
    Celle, F
    COMPUTING AND INFORMATICS, 2004, 23 (5-6) : 501 - 515
  • [6] Parallel, True Random Number Generator (P-TRNG): Using Parallelism for Fast True Random Number Generation in Hardware
    Arciuolo, Thomas
    Elleithy, Khaled M.
    2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 987 - 992
  • [7] True Random Number Generator based on ROPUF circuit
    Buchovecka, Simona
    Lorencz, Robert
    Kodytek, Filip
    Bucek, Jiri
    19TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD 2016), 2016, : 519 - 523
  • [8] Chaotic Oscillator Based True Random Number Generator
    Ozcelik, Ahmet Can
    Taskiran, Zehra Gulru Cam
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [9] Memristive True Random Number Generator for Security Applications
    Zhao, Xianyue
    Chen, Li-Wei
    Li, Kefeng
    Schmidt, Heidemarie
    Polian, Ilia
    Du, Nan
    SENSORS, 2024, 24 (15)
  • [10] A Compact Low-Voltage True Random Number Generator Based on Inkjet Printing Technology
    Erozan, Ahmet Turan
    Wang, Guan Ying
    Bishnoi, Rajendra
    Aghassi-Hagmann, Jasmin
    Tahoori, Mehdi B.
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2020, 28 (06) : 1485 - 1495