Tamoxifen is a selective estrogen receptor modulator widely used for the prophylactic treatment of breast cancer. In addition to the estrogen receptor ( ER), tamoxifen binds with high affinity to the microsomal antiestrogen binding site (AEBS), which is involved in ER-independent effects of tamoxifen. In the present study, we investigate the modulation of the biosynthesis of cholesterol in tumor cell lines by AEBS ligands. As a consequence of the treatment with the antitumoral drugs tamoxifen or PBPE, a selective AEBS ligand, we show that tumor cells produced a significant concentration- and time-dependent accumulation of cholesterol precursors. Sterols have been purified by HPLC and gas chromatography, and their chemical structures determined by mass spectrometric analysis. The major metabolites identified were 5 alpha-cholest-8-en-3beta-ol for tamoxifen treatment and 5alpha-cholest-8-en-3beta-ol and cholesta-5,7-dien-3beta-ol, for PBPE treatment, suggesting that these AEBS ligands affect at least two enzymatic steps: the 3beta-hydroxysterol-Delta(8)-Delta(7)-isomerase and the 3beta-hydroxysterol-Delta(7)-reductase. Steroidal antiestrogens such as ICI 182,780 and RU 58,668 did not affect these enzymatic steps, because they do not bind to the AEBS. Transient co-expression of human 3beta-hydroxysterol-Delta(8)-Delta(7)- isomerase and 3beta-hydroxysterol-Delta(7)-reductase and immunoprecipitation experiments showed that both enzymes were required to reconstitute the AEBS in mammalian cells. Altogether, these data provide strong evidence that the AEBS is a hetero-oligomeric complex including 3beta-hydroxysterol-Delta(8)-Delta(7)-isomerase and the 3beta-hydroxysterol-Delta(7)-reductase as subunits that are necessary and sufficient for tamoxifen binding in mammary cells. Furthermore, because selective AEBS ligands are antitumoral compounds, these data suggest a link between cholesterol metabolism at a post-lanosterol step and tumor growth control. These data afford both the identification of the AEBS and give new insight into a novel molecular mechanism of action for drugs of clinical value.