Effect of Doping, Photodoping, and Bandgap Variation on the Performance of Perovskite Solar Cells

被引:30
作者
Das, Basita [1 ,2 ]
Aguilera, Irene [1 ]
Rau, Uwe [1 ,2 ]
Kirchartz, Thomas [1 ,3 ,4 ]
机构
[1] Forschungszentrum Julich, Photovoltaik IEK5, D-52425 Julich, Germany
[2] Rhein Westfal TH Aachen, Fac Elect Engn & Informat Technol, Mies van der Rohe Str 15, D-52074 Aachen, Germany
[3] Univ Duisburg Essen, Fac Engn, Carl Benz Str 199, D-47057 Duisburg, Germany
[4] Univ Duisburg Essen, CENIDE, Carl Benz Str 199, D-47057 Duisburg, Germany
来源
ADVANCED OPTICAL MATERIALS | 2022年 / 10卷 / 13期
基金
欧盟地平线“2020”;
关键词
disorder; doping; drift-diffusion simulation; perovskites; photoluminescence; solar cells; transient absorption spectroscopy; DEFECT TOLERANCE; CARRIER LIFETIMES; EFFICIENCY; SEGREGATION; LIMITATIONS; FILMS;
D O I
10.1002/adom.202101947
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Most traditional semiconductor materials are based on the control of doping densities to create junctions and thereby functional and efficient electronic and optoelectronic devices. The technology development for halide perovskites had initially only rarely made use of the concept of electronic doping of the perovskite layer and instead employed a variety of different contact materials to create functionality. Only recently, intentional or unintentional doping of the perovskite layer is more frequently invoked as an important factor explaining differences in photovoltaic or optoelectronic performance in certain devices. Here, numerical simulations are used to study the influence of doping and photodoping on photoluminescence quantum yield and other device relevant metrics. It is found that doping can improve the photoluminescence quantum yield by making radiative recombination faster. This effect can benefit, or harm, photovoltaic performance given that the improvement of photoluminescence quantum efficiency and open-circuit voltage is accompanied by a reduction of the diffusion length. This reduction will eventually lead to inefficient carrier collection at high doping densities. The photovoltaic performance may improve at an optimum doping density which depends on a range of factors such as the mobilities of the different layers and the ratio of the charge carrier capture cross sections.
引用
收藏
页数:15
相关论文
共 69 条
[1]   Passivating contacts for crystalline silicon solar cells [J].
Allen, Thomas G. ;
Bullock, James ;
Yang, Xinbo ;
Javey, Ali ;
De Wolf, Stefaan .
NATURE ENERGY, 2019, 4 (11) :914-928
[2]  
ASA, SIM
[3]   Microsecond Carrier Lifetimes, Controlled p-Doping, and Enhanced Air Stability in Low-Bandgap Metal Halide Perovskites [J].
Bowman, Alan R. ;
Klug, Matthew T. ;
Doherty, Tiarnan A. S. ;
Farrar, Michael D. ;
Senanayak, Satyaprasad P. ;
Wenger, Bernard ;
Divitini, Giorgio ;
Booker, Edward P. ;
Andaji-Garmaroudi, Zahra ;
Macpherson, Stuart ;
Ruggeri, Edoardo ;
Sirringhaus, Henning ;
Snaith, Henry J. ;
Stranks, Samuel D. .
ACS ENERGY LETTERS, 2019, 4 (09) :2301-2307
[4]   Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency [J].
Braly, Ian L. ;
deQilettes, Dane W. ;
Pazos-Outon, Luis M. ;
Burke, Sven ;
Ziffer, Mark E. ;
Ginger, David S. ;
Hillhouse, Hugh W. .
NATURE PHOTONICS, 2018, 12 (06) :355-+
[5]   Searching for "Defect-Tolerant" Photovoltaic Materials: Combined Theoretical and Experimental Screening [J].
Brandt, Riley E. ;
Poindexter, Jeremy R. ;
Gorai, Prashun ;
Kurchin, Rachel C. ;
Hoye, Robert L. Z. ;
Nienhaus, Lea ;
Wilson, Mark W. B. ;
Polizzotti, J. Alexander ;
Sereika, Raimundas ;
Zaltauskas, Raimundas ;
Lee, Lana C. ;
MacManus-Driscoll, Judith L. ;
Bawendi, Moungi ;
Stevanovic, Vladan ;
Buonassisi, Tonio .
CHEMISTRY OF MATERIALS, 2017, 29 (11) :4667-4674
[6]   Contact Selectivity and Efficiency in Crystalline Silicon Photovoltaics [J].
Brendel, Rolf ;
Peibst, Robby .
IEEE JOURNAL OF PHOTOVOLTAICS, 2016, 6 (06) :1413-1420
[7]   Ionic screening in perovskite p-n homojunctions [J].
Calado, Philip ;
Barnes, Piers R. F. .
NATURE ENERGY, 2021, 6 (06) :589-591
[8]   How transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration model [J].
Courtier, Nicola E. ;
Cave, James M. ;
Foster, Jamie M. ;
Walker, Alison B. ;
Richardson, Giles .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (01) :396-409
[9]   Planar p-n homojunction perovskite solar cells with efficiency exceeding 21.3% [J].
Cui, Peng ;
Wei, Dong ;
Ji, Jun ;
Huang, Hao ;
Jia, Endong ;
Dou, Shangyi ;
Wang, Tianyue ;
Wang, Wenjing ;
Li, Meicheng .
NATURE ENERGY, 2019, 4 (02) :150-159
[10]   Defect tolerant device geometries for lead-halide perovskites [J].
Das, Basita ;
Liu, Zhifa ;
Aguilera, Irene ;
Rau, Uwe ;
Kirchartz, Thomas .
MATERIALS ADVANCES, 2021, 2 (11) :3655-3670