Wavefront autocorrelation of femtosecond laser beams

被引:2
作者
Grunwald, R [1 ]
Neumann, U [1 ]
Griebner, U [1 ]
Reimann, K [1 ]
Steinmeyer, G [1 ]
Kebbel, V [1 ]
机构
[1] Max Born Inst Nonlinear Opt & Short Pulse Spect, D-12489 Berlin, Germany
来源
LASER RESONATORS AND BEAM CONTROL VII | 2004年 / 5333卷
关键词
ultrafast optics; femtosecond lasers; spatio-temporal; characterization; autocorrelation; wavefront sensing; microoptics; thin films; nondiffractive beams; microaxicons;
D O I
10.1117/12.526722
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Spatially resolved wavefront sensing and time-resolved autocorrelation measurement of ultrashort pulses are usually separated procedures. For few-cycle pulses with significant spatial inhomogeneities and poor beam quality, a fully spatio-temporal beam characterization is necessary. Here we report on a new concept for a joint two-dimensional mapping of local temporal coherence and local wavefront tilt based on the combination of collinear autocorrelation and Shack-Hartmann wavefront sensing. Essentially for this "wavefront autocorrelation" is a splitting of the beam into a matrix of Bessel-like sub-beams by an array of thin-film microaxicons. The sub-beams are further processed by a two-dimensional collinear autocorrelation setup. The second harmonic distribution of sub-beams at a defined distance is imaged onto a CCD camera. The nondiffractive sub-beams ensure an extended depth of focus and a low sensitivity towards angular misalignment or axial displacement. With low-dipersion small-angle refractive-reflective shapers, wavefront-sensing of Ti:sapphire laser wavepackets was demonstrated experimentally for the first time.
引用
收藏
页码:122 / 130
页数:9
相关论文
共 50 条
[41]   Nanosecond and femtosecond laser deposition of BiSrCaCuO on MgO [J].
Vitug, Jaziel ;
Lampa, Krizia Isabel ;
Olaya, Cherrie May ;
de Vero, Jeffrey ;
Santos, Gil Nonato ;
Sarmago, Roland ;
Garcia, Wilson .
ICPS 2013: INTERNATIONAL CONFERENCE ON PHOTONICS SOLUTIONS, 2013, 8883
[42]   The concept and pulse measurements of a prototype femtosecond laser [J].
Garasz, Katarzyna ;
Barbucha, Robert ;
Kocik, Marek ;
Tanski, Mateusz ;
Mizeraczyk, Jerzy ;
Nejbauer, Michal ;
Radzewicz, Czeslaw .
PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (11B) :11-13
[43]   Effect of femtosecond laser radiation on mammalian oocytes [J].
Shakhov, A. M. ;
Astafiev, A. A. ;
Osychenko, A. A. ;
Nadtochenko, V. A. .
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 10 (05) :816-819
[44]   Effect of femtosecond laser radiation on mammalian oocytes [J].
A. M. Shakhov ;
A. A. Astafiev ;
A. A. Osychenko ;
V. A. Nadtochenko .
Russian Journal of Physical Chemistry B, 2016, 10 :816-819
[45]   Development of Fiber Gratings Inscribed by Femtosecond Laser [J].
Li Hongye ;
Rao Binyu ;
Zhao Xiaofan ;
Hu Qihao ;
Wang Meng ;
Wang Zefeng .
LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (11)
[46]   Femtosecond cataract surgery: transitioning to laser cataract [J].
Sutton, Gerard ;
Bali, Shveta Jindal ;
Hodge, Chris .
CURRENT OPINION IN OPHTHALMOLOGY, 2013, 24 (01) :3-8
[47]   Collinear Autocorrelation Measurement of Ultrashort Laser Pulse Based on Michelson Interferometer [J].
He Wei ;
Cui Minghuan ;
Song Didi ;
Qin Chaochao ;
Jiang Yuhai .
CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2018, 45 (12)
[48]   Autocorrelation of self-mixing speckle in an EDFR laser and velocity measurement [J].
D. Han ;
S. Chen ;
L. Ma .
Applied Physics B, 2011, 103 :695-700
[49]   Spatio-temporal processing of femtosecond laser pulses with thin-film microoptics [J].
Grunwald, R ;
Kebbel, V ;
Neumann, U ;
Griebner, U ;
Piché, M .
WAVE OPTICS AND PHOTONIC DEVICES FOR OPTICAL INFORMATION PROCESSING II, 2003, 5181 :1-11
[50]   Investigation of temporal evolution of picosecond laser pulse by synchronized femtosecond laser pulse [J].
Deng, Yangbao ;
Deng, Shuguang ;
Tian, Ye ;
Zhang, Guangfu ;
Xiong, Cuixiu .
JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2018, 27 (01)