Wavefront autocorrelation of femtosecond laser beams

被引:2
作者
Grunwald, R [1 ]
Neumann, U [1 ]
Griebner, U [1 ]
Reimann, K [1 ]
Steinmeyer, G [1 ]
Kebbel, V [1 ]
机构
[1] Max Born Inst Nonlinear Opt & Short Pulse Spect, D-12489 Berlin, Germany
来源
LASER RESONATORS AND BEAM CONTROL VII | 2004年 / 5333卷
关键词
ultrafast optics; femtosecond lasers; spatio-temporal; characterization; autocorrelation; wavefront sensing; microoptics; thin films; nondiffractive beams; microaxicons;
D O I
10.1117/12.526722
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Spatially resolved wavefront sensing and time-resolved autocorrelation measurement of ultrashort pulses are usually separated procedures. For few-cycle pulses with significant spatial inhomogeneities and poor beam quality, a fully spatio-temporal beam characterization is necessary. Here we report on a new concept for a joint two-dimensional mapping of local temporal coherence and local wavefront tilt based on the combination of collinear autocorrelation and Shack-Hartmann wavefront sensing. Essentially for this "wavefront autocorrelation" is a splitting of the beam into a matrix of Bessel-like sub-beams by an array of thin-film microaxicons. The sub-beams are further processed by a two-dimensional collinear autocorrelation setup. The second harmonic distribution of sub-beams at a defined distance is imaged onto a CCD camera. The nondiffractive sub-beams ensure an extended depth of focus and a low sensitivity towards angular misalignment or axial displacement. With low-dipersion small-angle refractive-reflective shapers, wavefront-sensing of Ti:sapphire laser wavepackets was demonstrated experimentally for the first time.
引用
收藏
页码:122 / 130
页数:9
相关论文
共 50 条
[21]   Acoustic Diagnostics of Femtosecond Laser Filamentation [J].
Shang, Binpeng ;
Zhang, Zhi ;
Zhang, Nan ;
Qi, Pengfei ;
Guo, Jiewei ;
Tao, Shishi ;
Lin, Lie ;
Liu, Weiwei .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2024, 36 (07) :512-515
[22]   Femtosecond laser crystallization of amorphous Ge [J].
Salihoglu, Omer ;
Kurum, Ulas ;
Yaglioglu, H. Gul ;
Elmali, Ayhan ;
Aydinli, Atilla .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (12)
[23]   Femtosecond laser application in biotechnology and medicine [J].
König, K .
FIFTH INTERNATIONAL SYMPOSIUM ON LASER PRECISION MICROFABRICATION, 2004, 5662 :255-267
[24]   Towards nanostructuring with femtosecond laser pulses [J].
Koch, J ;
Tanabe, T ;
Korte, F ;
Fallnich, C ;
Ostendorf, A ;
Chichkov, BN .
FIFTH INTERNATIONAL SYMPOSIUM ON LASER PRECISION MICROFABRICATION, 2004, 5662 :743-748
[25]   Femtosecond laser rejuvenation of nanocrystalline metals [J].
Balbus, Glenn H. ;
Echlin, McLean P. ;
Grigorian, Charlette M. ;
Rupert, Timothy J. ;
Pollock, Tresa M. ;
Gianola, Daniel S. .
ACTA MATERIALIA, 2018, 156 :183-195
[26]   Tunable Femtosecond Cherenkov Fiber Laser [J].
Liu, Xiaomin ;
Svane, Ask Sebastian ;
Laegsgaard, Jesper ;
Tu, Haohua ;
Boppart, Stephen ;
Turchinovich, Dmitry .
2014 IEEE 7TH INTERNATIONAL CONFERENCE ON ADVANCED INFOCOMM TECHNOLOGY (ICAIT), 2014, :218-221
[27]   Femtosecond laser interaction with energetic materials [J].
Roos, E ;
Benterou, J ;
Lee, R ;
Roeske, F ;
Stuart, B .
HIGH-POWER LASER ABLATION IV, PTS 1 AND 2, 2002, 4760 :415-423
[28]   Advances in femtosecond laser fabrication of microchannels [J].
Tsai, Hai-Lung ;
Yan, Xue-Liang ;
Wang, Su-Mei ;
Xia, Bo ;
Liu, Peng-Jun ;
Jiang, Lan .
Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2012, 32 (10) :991-1003
[29]   Autocorrelation measurement of femtosecond optical pulses based on two-photon photoemission in a photomultiplier tube [J].
Hattori, T ;
Kawashima, Y ;
Daikoku, M ;
Inouye, H ;
Nakatsuka, H .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 2000, 39 (8A) :L809-L811
[30]   Autocorrelation and Bandwidth Research of Chaotic Laser from Semiconductor Lasers [J].
Li Zeng ;
Feng Yuling ;
Yao Zhihai .
LASER & OPTOELECTRONICS PROGRESS, 2018, 55 (02)