Fault Diagnosis for Gas Turbine Blade Based on ABC- RVM algorithm

被引:0
作者
Chen Li-wei [1 ]
Pu Ying-dong [1 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin, Peoples R China
来源
2014 FOURTH INTERNATIONAL CONFERENCE ON INSTRUMENTATION AND MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC) | 2014年
关键词
temperature signal; fault diagnosis; ABC-; RVM;
D O I
10.1109/IMCCC.2014.27
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a fault diagnosis scheme for gas turbine blade is developed. The proposed system is based on the artificial bee colony algorithm optimize relevance vector machine (ABC-RVM) to accomplish this goal. First the characteristics extraction was researched, then Then ABC-RVM is used for the intelligent fault diagnosis and health warning provides scientific theory and effective method for the fault diagnosis.
引用
收藏
页码:93 / 97
页数:5
相关论文
共 10 条
[1]  
[Anonymous], APPL SCI TECHNOLOGY
[2]  
Chen L, 2012, ADV MAT RES, P468
[3]   A Methodology to Improve the Robustness of Gas Turbine Engine Performance Monitoring Against Sensor Faults [J].
Dewallef, Pierre ;
Borguet, Sebastien .
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2013, 135 (05)
[4]   Neural Networks for Gas Turbine Fault Identification: Multilayer Perceptron or Radial Basis Network? [J].
Loboda, Igor ;
Feldshteyn, Yakov ;
Ponomaryov, Volodymyr .
INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES, 2012, 29 (01) :37-48
[5]   Diagnostics of Analog Circuits Based on LS-SVM Using Time-Domain Features [J].
Long, Bing ;
Li, Min ;
Wang, Houjun ;
Tian, Shulin .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2013, 32 (06) :2683-2706
[6]   Multiclass Relevance Vector Machines: Sparsity and Accuracy [J].
Psorakis, Ioannis ;
Damoulas, Theodoros ;
Girolami, Mark A. .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (10) :1588-1598
[7]   Support vector machine techniques for nonlinear equalization [J].
Sebald, DJ ;
Bucklew, JA .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (11) :3217-3226
[8]   Improved SVM regression using mixtures of kernels [J].
Smits, GF ;
Jordaan, EM .
PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, :2785-2790
[9]   Hybrid Artificial Bee Colony Algorithm for Transit Network Design [J].
Szeto, W. Y. ;
Jiang, Yu .
TRANSPORTATION RESEARCH RECORD, 2012, (2284) :47-56
[10]  
Tayarani-Bathaie Sina S, 2012, DYNAMIC NEURAL NETWO, P144