Reduction of metal contact resistance of graphene devices via CO2 cluster cleaning

被引:28
作者
Gahng, Sarang [1 ,2 ]
Ra, Chang Ho [1 ,2 ]
Cho, Yu Jin [3 ]
Kim, Jang Ah [1 ]
Kim, Taesung [1 ,3 ]
Yoo, Won Jong [1 ,2 ]
机构
[1] Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol SAINT, Suwon 440746, Gyeonggi Do, South Korea
[2] Sungkyunkwan Univ, Samsung SKKU Graphene Ctr SSGC, Suwon 440746, Gyeonggi Do, South Korea
[3] Sungkyunkwan Univ, Sch Mech Engn, Suwon 440746, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
TRANSPORT;
D O I
10.1063/1.4881635
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report on a cleaning technique using CO2 clusters for large-scale mono-layer graphene fabricated via chemical vapor deposition (CVD) and its application to reduce contact resistance of the CVD graphene device. We found that polymeric residues, i.e., polymethyl methacrylate and photoresist which are generated during transfer and patterning of graphene, can be effectively removed via rapid shrinkage, induced by thermal energy transfer to low temperature CO2 clusters. By applying the CO2 clusters to the cleaning of the interface between metal and graphene, the metal contact resistance of the fabricated graphene field effect transistor was lowered to 26.6% of pristine graphene. The contact resistance shows the best result at an optimized CO2 cluster cleaning condition with a flow rate of 20 l/min, and the resistance was further lowered to 270 Omega mu m when a gate bias of -40V was applied. We expect that the proposed CO2 cluster cleaning to be a very promising technique for future device application using 2-dimensional materials, as it can enable low-energy, large-area, high-throughput, and mass-production-compatible process. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 31 条
[1]  
[Anonymous], 1998, [No title captured], Patent No. 5853962
[2]   Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point [J].
Blake, P. ;
Yang, R. ;
Morozov, S. V. ;
Schedin, F. ;
Ponomarenko, L. A. ;
Zhukov, A. A. ;
Nair, R. R. ;
Grigorieva, I. V. ;
Novoselov, K. S. ;
Geim, A. K. .
SOLID STATE COMMUNICATIONS, 2009, 149 (27-28) :1068-1071
[3]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[4]   Defect Scattering in Graphene [J].
Chen, Jian-Hao ;
Cullen, W. G. ;
Jang, C. ;
Fuhrer, M. S. ;
Williams, E. D. .
PHYSICAL REVIEW LETTERS, 2009, 102 (23)
[5]   Toward Intrinsic Graphene Surfaces: A Systematic Study on Thermal Annealing and Wet-Chemical Treatment of SiO2-Supported Graphene Devices [J].
Cheng, Zengguang ;
Zhou, Qiaoyu ;
Wang, Chenxuan ;
Li, Qiang ;
Wang, Chen ;
Fang, Ying .
NANO LETTERS, 2011, 11 (02) :767-771
[6]   Development of CO2 gas cluster cleaning method and its characterization [J].
Choi, Hoomi ;
Kim, Hojoong ;
Yoon, Deokjoo ;
Lee, Jong W. ;
Kang, Bong-Kyun ;
Kim, Min-Su ;
Park, Jin-Goo ;
Kwon, Soon-Bark ;
Kim, Taesung .
MICROELECTRONIC ENGINEERING, 2013, 102 :87-90
[7]   Plasma treatments to improve metal contacts in graphene field effect transistor [J].
Choi, Min Sup ;
Lee, Seung Hwan ;
Yoo, Won Jong .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (07)
[8]   A Simple Method for Cleaning Graphene Surfaces with an Electrostatic Force [J].
Choi, Won Jin ;
Chung, Yoon Jang ;
Park, Serin ;
Yang, Cheol-Soo ;
Lee, Young Kuk ;
An, Ki-Seok ;
Lee, You-Seop ;
Lee, Jeong-O .
ADVANCED MATERIALS, 2014, 26 (04) :637-644
[9]   Doping graphene with metal contacts [J].
Giovannetti, G. ;
Khomyakov, P. A. ;
Brocks, G. ;
Karpan, V. M. ;
van den Brink, J. ;
Kelly, P. J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (02)
[10]   Mechanical cleaning of graphene [J].
Goossens, A. M. ;
Calado, V. E. ;
Barreiro, A. ;
Watanabe, K. ;
Taniguchi, T. ;
Vandersypen, L. M. K. .
APPLIED PHYSICS LETTERS, 2012, 100 (07)