The long-time behavior of 3-dimensional Ricci flow on certain topologies
被引:4
|
作者:
Bamler, Richard H.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Math, 450 Serra Mall,Bldg 380, Stanford, CA 94305 USAStanford Univ, Dept Math, 450 Serra Mall,Bldg 380, Stanford, CA 94305 USA
Bamler, Richard H.
[1
]
机构:
[1] Stanford Univ, Dept Math, 450 Serra Mall,Bldg 380, Stanford, CA 94305 USA
来源:
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK
|
2017年
/
725卷
关键词:
CURVATURE;
MANIFOLDS;
3-MANIFOLDS;
SURFACES;
D O I:
10.1515/crelle-2014-0101
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper we analyze the long-time behavior of 3-dimensional Ricci flow with surgery. We prove that under the topological condition that the initial manifold only has non-aspherical or hyperbolic components in its geometric decomposition, there are only finitely many surgeries and the curvature is bounded by Ct(-1) for large t. This proves a conjecture of Perelman for this class of initial topologies. The proof of this fact illustrates the fundamental ideas that are used in the subsequent papers of the author.